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Abstract

The Baldwin e�ect is known as interactions between
learning and evolution, which suggests that individ-
ual lifetime learning can in
uence the course of evolu-
tion without the Lamarckian mechanism. Our concern
is to consider the Baldwin e�ect in dynamic environ-
ments, especially when there is no explicit optimal so-
lution through generations and it depends only on in-
teractions among agents. We adopted the iterated Pris-
oner's Dilemma as a dynamic environment, introduced
phenotypic plasticity into strategies, and conducted the
computational experiments, in which phenotypic plas-
ticity is allowed to evolve. The Baldwin e�ect was ob-
served in the experiments as follows: First, strategies
with enough plasticity spread, which caused a shift from
defective population to cooperative population. Second,
these strategies were replaced by a strategy with a mod-
est amount of plasticity generated by interactions be-
tween learning and evolution. By making three kinds of
analysis, we have shown that this strategy provides the
outstanding performance. Further experiments towards
open-ended evolution have also been conducted so as to
generalize our results.

Introduction

Baldwin proposed 100 years ago that individual lifetime
learning (phenotypic plasticity) can in
uence the course
of evolution without the Lamarckian mechanism (Bald-
win, 1896). This \Baldwin e�ect" explains the inter-
actions between learning and evolution by paying at-
tention to balances between bene�t and cost of learn-
ing. The Baldwin e�ect consists of the following two
steps (Turney, Whitley and Anderson, 1996). In the �rst
step, lifetime learning gives individual agents chances to
change their phenotypes. If the learned traits are use-
ful for agents and make their �tness increase, they will
spread in the next population. This step means the syn-
ergy between learning and evolution. In the second step,
if the environment is suÆciently stable, the evolutionary
path �nds innate traits that can replace learned traits,
because of the cost of learning. This step is known as ge-
netic assimilation. Through these steps, learning can ac-
celerate the genetic acquisition of learned traits without
the Lamarckian mechanism in general. Figure 1 roughly

shows the concept of the Baldwin e�ect which consists
of two steps described above.
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Figure 1: Two steps of the Baldwin e�ect.

Hinton and Nowlan constructed the �rst computa-
tional model of the Baldwin e�ect and conducted an evo-
lutionary simulation (Hinton and Nowlan, 1987). Their
pioneering work made the Baldwin e�ect come to the
attention of the computer scientists, and many compu-
tational approaches concerning the Baldwin e�ect have
been conducted since then (Arita, 2000). For example,
Ackley and Littman successfully showed that learning
and evolution together were more successful than either
alone in producing adaptive populations in an arti�cial
environment that survived to the end of their simulation
(Ackley and Littman, 1991). Also, Bull recently exam-
ined the performance of the Baldwin e�ect under varying
rates and amounts of learning using a version of the NK
�tness landscapes (Bull, 1999).
Most of them including Hinton and Nowlan's work

have assumed that environments are �xed and the op-
timal solution is unique, and have investigated the �rst
step (synergy between learning and evolution). How-
ever, as we see in the real world, learning could be more
e�ective and utilized in dynamic environments, because
the 
exibility of plasticity itself is advantageous to adapt
ourselves to the changing world. Therefore, it is essential
to examine how learning can a�ect the course of evolu-
tion in dynamic environments (Suzuki and Arita, 2000).
Our objective is to have a valuable insights into inter-



actions between learning and evolution, especially into
the Baldwin e�ect, by focusing on balances between
bene�t and cost of learning in dynamic environments:
whether the Baldwin e�ect is observed or not, how it
works, and what it brings after all in dynamic environ-
ments.

As one of the few studies that looks at both the
bene�ts and costs of learning (in static environments),
Menczer and Belew showed that interactions between
learning and evolution are not bene�cial if the task that
learning is trying to optimize is not correlated with the
task that evolution is working on (Menczer and Belew,
1991). Also, Mayley explored two criteria for the second
step of the Baldwin e�ect by using NK �tness landscapes
(Mayley, 1997). He concluded that two conditions, high
relative evolutionary cost of learning and the existence
of a neighborhood correlation relationship between geno-
typic space and phenotypic space, are the necessary con-
ditions for the second step to occur.

In general, dynamic environments can be divided typ-
ically into the following two types: the environments in
which the optimal solution is changed as the environ-
ment changes, and the ones in which each individual's
�tness is decided by interactions with others. As the for-
mer type of environments, Anderson quantitatively an-
alyzed how learning a�ects evolutionary process in the
dynamic environment whose optimal solution changed
through generations by incorporating the e�ects of learn-
ing into traditional quantitative genetics models (Ander-
son, 1995). It was shown that in changing environments,
learning eases the process of genetic change in the pop-
ulation, while in �xed environments the individual ad-
vantage of learning is transient. Also, Sasaki and Tokoro
studied the relationship between learning and evolution
using a simple model where individuals learned to dis-
tinguish poison and food by modifying the connective
weights of neural network (Sasaki and Tokoro, 1999).
They have shown that the Darwinian mechanism is more
stable than the Lamarckian mechanism while maintain-
ing adaptability. Both studies emphasized the impor-
tance of learning in dynamic environments.

We adopted the iterated Prisoner's Dilemma (IPD) as
the latter type of environments, where there is no ex-
plicit optimal solution through generations and �tness
of individuals depends mainly on interactions among
them. Phenotypic plasticity, which can be modi�ed by
lifetime learning, has been introduced into strategies in
our model, and we conducted the computational experi-
ments in which phenotypic plasticity is allowed to evolve.

Rest of the paper is organized as follows. Section 2 de-
scribes a model for investigating the interactions between
learning and evolution by evolving the strategies for the
IPD. The results of evolutionary experiments based on
this model are described in Section 3. In Section 4,
we analyze the strategy generated by the Baldwin e�ect

in these experiments by three methods (ESS condition,
state transition analysis and qualitative analysis). Sec-
tion 5 describes the extended experiments towards open-
ended evolution in order to generalize the results in the
previous sections. Section 6 summarizes the paper.

Model
Expression of Strategies for the Prisoner's
Dilemma

We have adopted the iterated Prisoner's Dilemma (IPD)
game as a dynamic environment, which represents
an elegant abstraction of the situations causing social
dilemma. IPD game is carried out as follows:

1) Two players independently choose actions from coop-
erate (C) or defect (D) without knowing the other's
choice.

2) Each player gets the score according to the payo� ma-
trix (Table 1). We term this procedure \round".

3) Players play the game repeatedly, retaining access at
each round to the results of all previous rounds, and
compete for higher average scores.

Table 1: A payo� matrix of Prisoner's Dilemma.
`
`
`
`
`
`
`
`
`
`

player
opponent

cooperate defect

cooperate (R:3, R:3) (S:0, T :5)
defect (T :5, S:0) (P :1, P :1)

(player's score, opponent's score)

T > R > P > S; 2R > T + S

In case of one round game, the payo� matrix makes
defecting be the only dominant strategy regardless of op-
ponent's action, and defect-defect action pair is the only
Nash equilibrium. But this equilibrium is not Pareto
optimal because the score of each player is higher when
both of the players cooperate, which causes a dilemma.
Furthermore, if the same couple play repeatedly, this
allows each player to return the co-player's help or pun-
ish co-player's defection, and therefore cooperating each
other can be advantageous to both of them in the long
run (Axelrod, 1984).
The strategies of agents are expressed by two types of

genes: genes for representing strategies (GS) and genes
for representing phenotypic plasticity (GP ). GS de-
scribes deterministic strategies for IPD by the method
adopted in Lindgren's model (Lindgren, 1991), which
de�nes next action according to the history of actions.
GP expresses whether each corresponding bit of GS is
plastic or not.
A strategy of memory m has an action history hm

which is a m-length binary string as follows:

hm = (am�1; : : : ; a1; a0)2; (1)



where a0 is the opponent's previous action (\0" repre-
sents defection and \1" represents cooperation), a1 is
the previous player's action, a2 is the opponent's next to
previous action, and so on.
GS for a strategy of memory m can be expressed by

associating an action Ak (0 or 1) with each history k as
follows:

GS = [A0A1 � � �An�1] (n = 2m): (2)

In GP , Px speci�es whether each phenotype of Ax is
plastic (1) or not (0). Thus, GP can be expressed as
follows:

GP = [P0P1 � � �Pn�1]: (3)

For example, the popular strategy \Tit-for-Tat" (coop-
erates on the �rst round, does whatever its opponent did
on the previous round) (Axelrod, 1984) can be described
by memory 2 as GS=[0101] and GP=[0000].

Meta-Pavolv Learning

A plastic phenotype can be changed by learning during
game. We adopted a simple learning method termed
\Meta-Pavlov". Each agent changes plastic phenotypes
according to the result of each round by referring to the
Meta-Pavlov learning matrix (Table 2). It doesn't ex-
press any strategy but expresses the way to change own
strategy (phenotype) according to the result of the cur-
rent round, though this matrix is the same as that of the
Pavlov strategy which is famous because it was shown
that it outperforms the popular strategy \Tit-for-Tat"
(Nowak and Sigmund, 1993).

Table 2: The Meta-Pavlov learning matrix.
`
`
`
`
`
`
`
`
`
`

player
opponent

cooperate defect

cooperate C D
defect D C

The learning process is described as follows:

1) At the beginning of the game, each agent has the same
phenotype as GS itself.

2) If the phenotype used in the last round was plastic,
in other words, the bit of GP corresponding to the
phenotype is 1, the phenotype is changed to the cor-
responding value in the Meta-Pavlov learning matrix
based on the result of the last round.

3) The new strategy speci�ed by the modi�ed phenotype
will be used by the player from next round on.

Take a strategy of memory 2 expressed by GS=[0001]
and GP=[0011] for example of learning (Figure 2). Each
phenotype represents the next action corresponding to

DD
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Figure 2: An example of Meta-Pavlov learning.

the history of the previous round, and the underlined
phenotypes are plastic.

Let us suppose that the action pair of the previous
round was \CC (player's action: cooperation, opponent's
action: cooperation)" and the opponent defects at the
present round. This strategy cooperates according to the
phenotype and the result of the current round is \CD"
(Sucker's payo�). The strategy changes own phenotype
according to this failure based on the Meta-Pavlov learn-
ing matrix, because the phenotype applied at this round
is plastic. The phenotype \C" corresponding to the his-
tory \CC" is changed to \D" in this example. Therefore,
this strategy chooses defection when it has the history
\CC" at the next time. Meta-Pavlov learning is intuitive
and natural in the sense that it is a simple realization of
reinforcement learning.

The values of GS that are plastic act merely as the ini-
tial values of phenotype. Thus we represent strategies by
GS with plastic genes replaced by \x" (e.g. GS=[1000]
and GP=[1001] ! [x00x]).

Evolution

We shall consider a population of N individuals inter-
acting according to the IPD. All genes are set randomly
in the initial population. The round robin tournament is
conducted between individuals with the strategies which
are expressed in the above described way. Performed ac-
tion can be changed by noise (mistake) with probability
pn. Each plastic phenotype is reset to the correspond-
ing value of GS at the beginning of games. The game
is played for several rounds. We shall assume that there
is a constant probability pd (discount parameter) for an-
other round. The tournament is \ecological": The total
score of each agent is regarded as a �tness value, new
population is generated by the \roulette wheel selection"
according to the scores, and mutation is performed on a
bit-by-bit basis with probability pm.

Average scores during the �rst 20 IPD games between
new pair are stored, and will be used as the results of
the games instead of repeating games actually, so as to
reduce the amount of computation. Stored scores are
cleared and computed again by doing games every 500
generation.
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Figure 3: The experimental result (2000 generations).
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Figure 4: The experimental result (300 generations).

Evolutionary Experiments

Strategies of memory 2 were investigated in the evolu-
tionary experiments described in this section. We con-
ducted an experiment for 2000 generations using follow-
ing parameters: N = 1000, pm = 1=1500, pn = 1=25 and
pd = 99=100.

The evolution of population for the �rst 2000 gener-
ations is shown in Figure 3 and that for the �rst 300
generations is shown in Figure 4. In each �gure, the
horizontal axis represents the generations. The vertical
axis represents the distribution of strategies, and at the
same time, it also represents both \plasticity of popula-
tion" (in black line) and the average score (in white line).
Plasticity of population is the ratio of \1" in all genes of
GP s, and it corresponds to the \Phenotypic Plasticity"
in Figure 1. The average score represents the degree of
cooperation in the population, and it takes 3:0 as the
maximum value when all rounds are \CC".

The evolutionary phenomena that were observed in
experiments are summarized as follows. Defective strate-
gies ([0000], [000x] and so on) spread and made the aver-
age score decrease until about 60th generation, because
these strategies can't cooperate each other. Simultane-

ously, partially plastic strategies ([0x0x], [00xx] and so
on) occupied most of the population. Next, around the
250th generation, more plastic strategies ([xxxx], [x0xx]
and so on) established cooperative relationships quickly,
which made the plasticity and average �tness increase
sharply. This transition is regarded as the �rst step of
the Baldwin e�ect.
Subsequently, the plasticity of population decreased

and then converged to 0:5 while keeping the average
score high. Finally, the strategy [x00x] occupied the pop-
ulation. The reason seems to be that the strategy has
the necessary and suÆcient amount of plasticity to main-
tain cooperative relationships and prevent other strate-
gies from invading in the population. This transition is
regarded as the second step of the Baldwin e�ect.
The evolutionary phenomena described above was ob-

served in about 70% of the experiments, and the popula-
tion converged to the strategy [x00x] in all experiments
we conducted. Further analysis on this strategy will be
conducted in the next Section. Another series of exper-
iments has shown overall that the higher the mutation
rate becomes, the faster the strategies tend to evolve. It
has been also shown that the higher the noise probabil-
ity becomes, the more All-D type strategies are selected,
and the less the system becomes stable.
Figure 5 made us grasp the clear image of the evolu-

tionary behavior of the system in the experiments. This
�gure shows the evolutionary trajectory of ten experi-
ments drawn in the space of score and plasticity. We
see the evolutionary process consists of 3 modes. The
score decreases without increase of plasticity during an
initial stage. The cause of this decrease is that defect-
oriented strategies (e.g. [0000][000x]) spread in the ini-
tial randomly-created population. The score decreases
nearly to 1.0 which is the score in the case of defect-defect
action pair. When the score reaches this value, a \mode
transition" happens and the �rst step of the Baldwin
e�ect starts. In this stage, phenotypic plasticity gives
chances to be adaptive. Therefore, score is correlated
with plasticity, and approaches nearly 3.0, that is the
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Figure 5: Two steps of the Baldwin e�ect.

score in the case of cooperate-cooperate action. Strate-
gies with enough plasticity (e.g. [xxxx][x0xx][xx0x]) oc-
cupy at the end of this stage. Then, another mode tran-
sition happens suddenly, and plasticity decreases grad-
ually while keeping score high. The plasticity decreases
monotonously, and after all, the population always con-
verged to be homogenous that is occupied with the strat-
egy [x00x]. As is apparent from this �gure, there were ex-
ceptions to which above description doesn't apply, how-
ever, it has been shown that the system always stabilized
with [x00x] after all.

Analysis of Meta-Pavlov [x00x]
ESS Condition

An ESS (Evolutionary Stable Strategy) is a strategy such
that, if all the members of a population adopt it, no
mutant strategy can invade (Maynard Smith, 1987). The
necessary and suÆcient condition for a strategy \a" to
be ESS is:

E(a; a) > E(b; a) 8b; (4)

or

E(a; a) = E(b; a) and E(a; b) > E(b; b) 8b; (5)

where E(a; b) is the score of strategy \a" when strategy
\a" plays against strategy \b".
We conducted the iterated games between [x00x]

(GS=[0000], GP=[1001]) and all 256 strategies with
memory 2, and computed the average scores of them,
so as to examine whether it satis�ed the ESS condition

or not. The noise probability (pn) was 1/25 and the dis-
count parameter (pd) was 99/100. The results are shown
in Figure 6. The horizontal axis represents all strategies
by interpreting the genotypic expression [GSGP ] as an
8 bit binary number x (e.g. GS=[0000], GP=[1001] !
000010012=9). The vertical axis represents the relative
scores of the strategy x, that is,

E([x00x]; [x00x])�E(x; [x00x]): (6)

This graph shows that this value is always positive.
Therefore, [x00x] is an ESS in the population of memory
2 strategies.
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Figure 6: Relative scores of all strategies of memory 2
against [x00x].

State Transition Analysis

Figure 7 shows a state transition diagram of the Meta-
Pavlov [x00x] strategy. Each state is represented by a
box, in which the actions in the current round are de-
scribed: the opponent's action on top and the [x00x] 's
action on bottom (0: defect, 1: cooperate). The cur-
rent values of plastic genes also discriminate the states,
and they are described in the lower right corner (e.g.
left \x"=0 and right \x"=1 ! 01). Two arrows issue
forth from each state, depending on whether the oppo-
nent plays C or D at the next round. Described actions
of [x00x] in the destination box are identical, and it will
be the next action of [x00x]. For example, the stabilized
state of the game between [x00x] and All-D is expressed
by a loop (\cycle 2" in this �gure), which means that
the game generates the periodic action pairs. The boxes
without inputted arrows can be reached by noise.
Duration of the state \A" means that mutually coop-

erative relationship has been established. It is a remark-
able point that if this relationship is abolished by the
opponent's defective action, a bit of protocol (cycle \1"
in this �gure) is needed to restore the damaged relation-
ship as follows:
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Figure 7: A state transition diagram of the Meta-Pavlov
[x00x].

This minimal fence-mending is done exactly when an
accidental opponent's defect by noise occurs after mu-
tually cooperative relationship has been established in
the game between [x00x] and itself. This property of
[x00x] seems to play an important part in recovery from
the broken relationship, and to make the strategy be an
ESS.

Qualitative Analysis on Phenotypic
Plasticity

Many researchers in evolutionary computation or related
�elds have focused exclusively on the bene�ts on the phe-
notypic plasticity. Phenotypic plasticity enables the in-
dividuals to explore neighboring regions of phenotype
space. The �tness of an individual is determined ap-
proximately by the maximum �tness in its local region.
Therefore, if the genotype and the phenotype are corre-
lated, plasticity has the e�ect of smoothing the �tness
landscape, and makes it easier for evolution to climb to
peaks in the landscape. This is the �rst step of the Bald-
win e�ect.
However, there is the second step, because plasticity

can be costly for an individual. Learning requires en-
ergy and time, for example, and sometimes brings about

dangerous mistakes. In our computational experiments,
the costs of learning are not explicitly embed in the sys-
tem. The costs of learning are implicitly expressed by
the behavior that are caused typically by noise. For ex-
ample, when a noise happens to a game between [x00x]
and [xxxx], plastic properties make the [xxxx] strategy
play more C than [x00x] while they restore the dam-
aged relationship, which generates [xxxx]'s loss. The op-
timum balance between plasticity and rigidity depends
on the performance of the learning algorithm. In this
context, Meta-Pavlov learning algorithm gets along ex-
tremely well with [x00x], as will be shown in the ex-
tended experiments.
Here, we investigate why these two plastic genes in

[x00x] remained in the second step of the Baldwin e�ect,
that is, the signi�cance of the two plastic genes. While
the functions of these two genes are of course depend
on the interactions among all genes, simple explanation
could be possible based on the results of our qualitative
analysis as follows:

� The left \x" (which describes the plasticity of the
action immediately after D-D) is e�ective especially
when [x00x] plays against defect-oriented strategies.
For example, when [x00x] plays against All-D, [x00x]
gets the Sucker's payo� once every three rounds (cycle
2 in Figure 7), and gets only 0.67 on average, caused
by the plasticity of the left \x". However, All-D gets
about 2.33, which supports the ESS property of [x00x]
because [x00x] gets about 2.6 when it plays against it-
self, as follows:

[0000]: .. 000000000000 .. Average 2.33

[x00x]: .. 010010010010 .. Average 0.67

In contrast, for example, the game between the Pavlov
strategy (Nowak and Sigmund, 1994) and All-D is as
follows:

[0000]: .. 000000000000 .. Average 3

[1001]: .. 010101010101 .. Average 0.5

� The right \x" (which describes the plasticity of the
action immediately after C-C) is e�ective especially
when [x00x] plays against cooperate-oriented strate-
gies. [x00x] can defect 
exibly by taking advantage of
the opponent's accidental defect by noise. The right
\x" becomes 0, when C-C relationship is abolished by
the opponent's defect as shown in Figure 7. Therefore,
[x00x] exploits relatively cooperate-oriented strategies.
Followings are the rounds between [x001] and [x00x].
The �rst 0 of [x001] represents an accidental defect by
noise. Average scores are calculated only during the
oscillation.

[x001]: .. 1110011011011 .. Average 1.33

[x00x]: .. 1111010010010 .. Average 3



On the other hand, for example, the game between
the Pavlov strategy and [x001] is as follows:

[x001]: .. 1110000000000 .. Average 3

[1001]: .. 1111010101010 .. Average 0.5

These two properties of [x00x] are quite e�ective on
the premise that it establishes strong relationship with
itself. Actually, minimal fence-mending is realized by
utilizing these two plastic genes (two times of learning
each gene) which is represented by the \cycle 1" in Fig-
ure 7.

Extended Experiments towards
Open-ended Evolution

Evolution of Learning Algorithms

We have adopted the Meta-Pavlov learning method as
an algorithm for modifying strategies by changing plastic
phenotype so far. Here, we weaken this constraint, and
shall focus on the evolution of not only strategies but
also learning algorithms by de�ning the third type of
genes.
In the experiments described in this section, each in-

dividual has genes for de�ning a learning method (GL),
which decides how to modify the phenotype represent-
ing its strategies. GL is a four-length binary string com-
posed of the elements of learning matrix such like Table
2. The order of elements in the string is [(DD) (DC)
(CD) (CC)]. For example, the Meta-Pavlov learning
method described in the previous sections is expressed
by [1001]. It could be said that the learning methods
(GL) and the strategies (GS and GP ) co-evolve, be-
cause the performance of learning methods depends on
the strategies to which they will be applied.
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Figure 10: Average occupation of strategies.

Experiments were conducted under the same condi-
tions as those in the previous experiments except for

GL. Initial population had 100 kinds of combinations of
randomly generated GS, GP and GL, and each kind
had ten identical individuals. Typical results are shown
in Figure 8 and Figure 9. Each area in these �gures ex-
presses a (strategy, learning method) pair. For example,
\x00x:1001" means the [x00x] strategy with the learning
method [1001] (Meta-Pavlov). It is shown that Meta-
Pavlov [x00x] and [x001:1000] occupied the populations
and established a stable state in Figure 8 and Figure 9
respectively.
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Figure 11: A state transition diagram of [x001:1000].
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Figure 12: A state transition diagram of Prudent-Pavlov.

Figure 10 shows the average occupation of top ten
(strategy, learning method) pairs in the 4000th genera-
tion over 60 trials. It is shown that Meta-Pavlov [x00x]
occupied nearly half of the population in the 4000th gen-
eration on average. Meta-Pavlov [x00x] occupied the
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Figure 9: Evolution of learning algorithms and strategies (Case 2).

population and established a stable state (as shown in
Figure 8) in 29 trials, [x001:1000] which is at the 4th in
Figure 10 did so (as shown in Figure 9) in 3 trials, and
no pairs occupied the population and established a sta-
ble state in the rest of trials. It follows from these facts
that all but these two strategies in Figure 10 are invaded
by mutants, though they can invade the population in
certain conditions.

A state transition diagram of [x001:1000] is shown in
Figure 11. We have found that this strategy has essen-
tially the same property as that of \Prudent-Pavlov",
whose state transition diagram is shown in Figure 12,
though [x001:1000] has additional transient nodes, and
there are subbtle di�erences in expression of states and
state transitions. Prudent-Pavlov can be interpreted as
a sophisticated o�spring of Pavlov (Boerljst, Nowak and
Sigmund, 1997). Prudent-Pavlov follows in most cases
the Pavlov strategy. However, after any defection it
will only resume cooperation after two rounds of mu-
tual defection. They are remarkable facts that in our
experiments a derivative of such a sophisticated human-
made strategy was generated automatically, and that the
Meta-Pavlov [x00x] outperformed the other strategies in-
cluding this strategy.

Evolution without limitation of memory
length

We have conducted further experiments towards open-
ended evolution. Two types of mutation, gene dupli-
cation and split mutation, were additionally adopted,
which allows strategies to become complex or simple
without restrictions. The gene duplication attaches a
copy of the genome itself (e.g., [1101] ! [11011101]).
The split mutation randomly removes the �rst or second
half of the genome (e.g., [1101] ! [11] or [01]). Each
mutation is operated on GS and GP at the same time.
In this series of experiments, we adopted Meta-Pavlov
learning without allowing the learning mechanisms to
evolve for convenience of the analysis.

Initial population was composed of strategies of mem-
ory 1, each of which has randomly generated GS and
GP which was set to [00] (no plasticity). The results are
shown in Figure 13. In most trials, during the �rst hun-
dreds of generations, the system oscillated ([01]! [11]!
[10]! [00]) in the same manner as in the Lindgren's ex-
periments (Lindgren, 1991). At the end of the period of
oscillation, a group of memory 2 strategies was growing,
and took over the population. After that, there were two
major evolutionary pathways, both of which happened
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Figure 13: Evolution without limitation of memory length.

with nearly equal probabilities:

1) Strategies evolved showing the Baldwin e�ect as de-
scribed in the previous sections. Later on, the system
stabilized with [x00x] typically near the 1500th gener-
ation.

2) [x00x] entered the scene quickly, took over the gener-
ation, and the system stabilized with it.

It has been shown that which course the evolution
takes depends on the state of the population while
memory 2 strategies is growing. If the population is
taken over by defect-oriented strategies before cooperate-
oriented strategies emerge, the evolution tends to take
the course 1). On the other hand, if the population
is taken over by cooperate-oriented strategies without
emergence of defect-oriented strategies of memory 2,
then the evolution tends to take the course 2).
In most cases we observed, the system got stuck in the

evolutionary stable state through either of the courses,
though in rare cases the system didn't stabilize with
[x00x] but stabilized with some mixture of various strate-
gies of more than 2-length memory. The reason why
strategies of more than 2-length memory rarely evolved
is considered to relate to the mutation of learning mech-
anisms. The point here is that gene duplication changes
the phenotype corresponding to the plastic genes because
learning happens independently at two di�erent points if
a plastic gene is duplicated. Therefore, the evolution of
phenotype could be discontinuous when gene duplication
happens.

Conclusion
The Baldwin e�ect has not always been well received
by biologists, partly because they have suspected it of
being Lamarckist, and partly because it was not obvi-
ous it would work (Maynard Smith 1996). Our results
of the experiments inspire us to image realistically how
learning can a�ect the course of evolution in dynamic en-
vironments. It is a remarkable fact that a drastic mode

transition happens at the edge between the �rst step
and second step of the Baldwin e�ect in the environ-
ments where the optimal solution is dynamically changed
depending on the interactions between individuals as is
clearly shown in Figure 5.
Furthermore, based on the results of our experiments,

we could imagine biological adaptation as a measuring
worm climbing around on the �tness landscape (Figure
14). The population of a species is represented by the
worm. Its head is on the phenotypic plane and its tail is
on the genotypic plane. These two planes are assumed
to be correlated each other to a high degree. The land-
scape is always changing corresponding to the state of
the worm (interactions between individuals). The worm
stretches its head to the local top (�rst step), and when
it stretches itself out, it starts pulling it's tail (second
step). In our experiments, the Baldwin e�ect was ob-
served once every trial. We believe that the repetition
of these two steps like the behavior of measuring worms
will be observed in the experiments where the environ-
ment (e.g. payo� matrix) itself is also changing. Such
view of the interactions between learning and evolution
might simplify the explanation of punctuated equilibria.
In fact, Baldwin noticed that the e�ect might explain
that variations in fossil deposits seem often to be dis-
continuous (Baldwin, 1896).

Phenotypic plane

Genotypic plane

Figure 14: A \measuring worm" on the �tness landscape.

It has been also shown that implications that learning
cost has on the attribution of an individual's �tness score
in dynamic environments is very di�erent from those in
static environments. High evolutionary cost of learning



is one of the necessary conditions for the second step of
the Baldwin e�ect to occur in general, as pointed out
by Mayley (Mayley, 1997). However, in our model the
learning costs are not explicitly embed in the system.
In the experiments, the second step was dominated not
by time-wasting costs, energy costs, unreliability costs
or so on during the vulnerable learning period. Instead,
it was dominated by the constraints of the performance
of the learning algorithms themselves in the complex en-
vironment where it was impossible for any algorithm to
predict opponents' behavior perfectly.

The Baldwin e�ect generated the Meta-Pavlov [x00x]
strategy, and the system stabilized with it. We have an-
alyzed the property of the Meta-Pavlov [x00x] strategy,
and have shown it's outstanding performance, which is
rather a by-product to us. The excellent performance of
the Meta-Pavlov [x00x] is also supported by the fact that
in the extended experiments it outperformed a derivative
of the Prudent-Pavlov which can be interpreted as a so-
phisticated o�spring of the famous strategy Pavlov.

This model can be extended in several directions. One
obvious direction would be to attempt to reinterpret and
evaluate our results concerning the interactions between
learning and evolution in the context of pure biology.
Another direction would be to focus on the technical
aspects of the evolutionary mechanism of varying phe-
notypic plasticity. It would be interesting to apply the
automatic mechanism of adjusting the balance between
evolution and learning in the �elds of distributed AI or
multi-agent systems.
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