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ABSTRACT
We demonstrate that complex food webs may originate from
mass extinctions. For this purpose, a minimal computa-
tional model for the evolution of food webs is constructed.
In the model, food web structure is represented by a kind
of dynamic random graph with some biological constraints,
and evolves under the condition without fitness, competition
among species, nor population dynamics. It is shown that
the behavior of the system has three different phases, among
which the Class B (mid-phase) exhibits complex nonequi-
librium dynamics and can reproduce the empirical observa-
tions.
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1. INTRODUCTION

Significant advances have been made in the field of com-
plex networks in recent years [1, 6]. Especially the struc-
ture and the evolutionary dynamics of food webs are among
the central issues under discussion [7, 15, 9, 4]. A food
web is represented by a directed graph consisting of vertices
(species) and directed edges (trophic links). Several reports
have shown that such graphs do not have network topology
of classical Erd̈osh-Renyi’s random graph, but rather are de-
scribed as ‘small world” or ‘scale-free” [7, 15, 4].

Besides empirical analysis, there are theoretical approaches
with some different classes of models [5]. The first class is
characterized by static models, and suggest that food webs
have some universal properties [16, 4]. The second is char-
acterized by dynamic models, which include traditional pop-
ulation dynamics. And the last is concerned with food web
properties of longer time scales or macroevolution. While
the first two classes lack the combined view of dynamics
and structure, this class targets such a combined view. Among
them, scientists have taken a new approach based on toy
models in recent years, where the patterns of mass extinc-
tions in the fossil record or self-organized critical phenom-
ena are focused [2, 14, 3, 11].

Recently several reports have investigated on the pat-
terns of mass extinctions in the fossil record. Among them,

one of the most striking common features is that mass ex-
tinction follows power law distribution:

f(s) ∝ s−τ , (1)

wheres is the size of mass extinctions, andf(s) is fre-
quency, with an exponentτ ≈ 2 [10]. Furthermore, quanti-
tative models have been proposed to explain this power law
distribution, and some relationships between food webs and
mass extinctions are suggested [11, 2]. The essential prob-
lem can be summarized by two questions. What is the cause
of mass extinction, and what is the mechanism of selecting
victims [2]? Specifically, this paper focuses on the ques-
tion: what mechanisms could generate the non-random but
complex topology of food webs in nature?

According to the emerging complex networks theory,
such non-random structures can be formed through network
growing or some specific rewiring processes [6]. However,
it is unlikely that food webs have perpetual growth in size
or such specific rewiring mechanisms. Therefore, we inves-
tigate another simple mechanism which can reproduce such
non-random topology.

Our basic idea is that mass extinctions may bring about
non-random topology to food webs, in other words, mass
extinctions keep food webs far away from equilibrium state
and at the same time complex structure gradually evolves
through symmetry breaking. In genaral, symmetry break-
ing occurs in a situation where, given a symmetrical equlib-
rium state, a self-amplifying mechanism of fluctuation ex-
ists which can be activated by asymmetric input or flow.
Such a self-organized structure in a situation of this type is
known as “dissipative structure” [12], where the fluctuation
is essential. Therefore, were it not for any constraint in the
evolution of species, food web structure would be like ran-
dom graph. However, living organisms have evolutionary
constraints such as natural selection at least at the level of
individuals within a population (microevolution). We be-
lieve that mass extinctions may function as the amplifying
mechanism at the level of stable species (macroevolution).

With these issues in mind, we construct a minimal model
of food web evolution which has following two key features.



• The model has an evolutionary mechanism which is
represented by random rewiring. Thus food webs are
destined to random networks as equilibrium state but
for any other mechanisms.

• At the same time, a mass extinction mechanism is
adopted, which potentially drives the networks to non-
random state through symmetry breaking.

At least in principle, the model could generate non-random
network topology and show both the power law distribution
of extinction sizes and scale-free degree distribution of net-
works. The degree distribution is the distribution of number
of edges attached to each vertex. These features are based
on the idea that fitness or interspecies competition might not
be the driving force of macroevolution [8, 13].

This paper is organized as follows. First, we describe a
minimal model for macroevolution. Then we investigate its
statistical and structural properties based on the computer
experiments. Finally we discuss some biological implica-
tions and conclude the paper.

2. MODEL

A food web is represented by a directed graph, in which
each node expresses a species and each arrow from one
node to another indicates a trophic link, in other words, an
energy flow from a resource species (prey) to a consumer
species (predator). The single root node represents the en-
ergy source like the sun.

The dynamics of the system is governed by two mecha-
nisms. The first one represents an evolutionary process re-
alized by random rewiring of edges (addition or removal).
This mechanism has a tendency to increase the system’s en-
tropy towards a maximum. The second mechanism has the
potential to cause mass extinctions. Extinctions occur in
two cases. The first case is random accident; a species is se-
lected for extinction randomly. The other is co-extinction;
a vertex lost all in-edges becomes also extinct. Note that if
all of a species’ prey become extinct, then it too becomes
extinct (recursively). So, avalanches of extinction (mass ex-
tinction) can occur. This mechanism is based on Amaral-
Meyer [2]. After these processes, randomly selected species
will be duplicated immediately. Thus the size of networkN
will be kept in constant.

The model is summarized as the following repetition of
steps:

1. A random accident occurs with a probabilityPaccident,
which means that a vertex is selected randomly and
all edges connected to it and itself are deleted. Oth-
erwise, the following rewriting process is executed.
First, a pair of vertices is selected randomly. Then
addition of the edge is attempted with the probabil-
ity PaddE . Otherwise removal of the edge (if any)

Table 1: Parameters.
N the size of network

Paccident the rate of random accident at each steps
PaddE the rate at which adding edge is attempted

is attempted. In case of addition, the direction of the
new edge is determined based on the trophic level; the
edge would be directed from vertex of a lower trophic
level to upper one. The trophic level of a vertex is the
path length from the root to it.

2. All vertices with no in-edge and all edges connected
to them are deleted recursively.

3. The process that randomly selected vertex and all edges
connected to it are copied is repeated until the size of
the network reaches to the constant valueN .

In the case that there is no vertex other than the root,
a new vertex is generated, and the root and the vertex are
connected by a new edge.

3. RESULTS

3.1. General behavior

First, we focus on the trophic diversity so as to explore the
general behavior of the system. The trophic diversity is de-
fined as the number of trophic species. Here, trophic species
are the groups of vertices that share the same set of trophic
relations.

Figure 1 shows the trophic diversity determined by tem-
poral average at each run with parameter sets. We see that
it is steady nearly at the upper limit in the region of low
Paccident and highPaddE . In contrast, the highestPaccident

or lowestPaddE region has the trophic diversity of the lower
limit 1. The transition region between them is limited to the
narrow area.

A time-series of the trophic diversity is examined in or-
der to investigate the evolutionary activity and the transition
process (Figure 2). Note thatPaddE is increased linearly at
a constant rate every time step. Trophic diversity has the
value of the lower limit at start-up (Class A), then an explo-
sive growth up to the upper limit occurs asPaddE increases.
In this phase, intensive fluctuation is seen (Class B). After
that, the number of fluctuation comes down (Class C). Con-
sidering the way of the extinction and replication mecha-
nisms adopted in the model, it is clear that the fluctuation
indicates mass extinction.

Next, we conducted an analysis in order to reveal statis-
tical features of the system. Figure 3 shows the frequency
distribution of sizes of extinction (the number of deleted
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Figure 1: The landscape of trophic diversity; X:PaddE , Y:
Paccident(log scale), Z: trophic diversity.N = 300.

 0

 50

 100

 150

 200

 250

 300

 1×108 5×107 0×100

tr
op

hi
c 

di
ve

er
si

ty

time T

-¾
Class A

-¾
Class B

-¾
Class C

Figure 2: Transition process of trophic diversity.
Paccident = 0.001. PaddE follows linear function of time
stepT ; PaddE = T × 2.5× 10−10. Network sizeN = 300.

vertices at one step). It is shown that it approximately fol-
lows the power lawF (s) ≈ s−τ with exponentτ = 1.5 ∼
4.0, in which asPaddE increases the exponentτ also in-
creases.

We also examined the network topology by its degree
distributions. Figure 4 shows the degree distributions of net-
works. As we see from the figure, the distribution can be
clearly divided into three types: exponential, scale free and
poissonian distributions. The terms Class A, B and C used
in the above description are defined based on this obser-
vation. Exponential distribution arises at very lowPaddE ,
which correspond to Class A. It has been also shown that
scale free distribution arises in Class B, and poissonian dis-
tribution arises in Class C.
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Figure 3: Frequency distributions of size of extinction.
Paccident = 0.001. Network sizeN = 300.

3.2. Behavior in each class

Class A, B and C are investigated individually in order to
do more detailed analysis. Firstly, we investigated the rela-
tion between parameter sets and the evolutionary behavior.
The result is shown in Figure 5. Parameter sets of the area
shaded black or dark gray (the left or upper side) produce
the behavior classified as class A. White area (the lower
right large area) of parameter sets corresponds to class C.
Class B corresponds to the parameter sets in the light gray
area between class A and class C.

3.2.1. Class A (frozen state)

In this class, the system is in the frozen equilibrium state. It
appears when ‘adding of an edge” is rare, and ‘random acci-
dent” is frequent. In this class, almost all vertices are linked
directly to the root vertex at all times. Thus, the networks
have always the star network topology. As for the dynamics
(Figure 6), trophic diversity is kept around the lower limit
1, and at the same time mass extinction is rare, which is an
inevitable corollary. The state in this class is summarized as
low diversity, high stability, and high spatial symmetry.

3.2.2. Class B (complex state)

In this class, the system exhibits complex and inhomoge-
neous behaviors. As shown in Figure 4, the degree distri-
bution follows the power law behavior. However, degree
distribution at every step has a significant deviation from
that (in Figure 9). In many cases, they seem to be exponen-
tial rather than power-law distribution. From the dynami-
cal view point, the networks always fluctuate intensively in
contrast to the class A. In conjunction with such network
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Figure 4: Degree distributions of networks.Paccident =
1.0× 10−3, Network sizeN = 300.

dynamics, this class has many punctuated mass extinctions
with different sizes (1 ∼ N ) as shown in Figure 7.

3.2.3. Class C (chaotic state)

In this class, the system exhibits chaotic or random behav-
ior. In other words, the system is in the homogenous equi-
librium state. Networks are random graph at all times. The
number of mass extinctions is smaller than that in class B,
and the size of mass extinctions are homogenous; small ex-
tinction or annihilation as shown in Figure 8. Annihilations
occur when the trophic link is removed for some reason,
given that it is just one trophic link from the root in the
network. After such annihilations occur, the network takes
back a random topology swiftly. Thus, in this class the sys-
tem shows an equilibrium state at almost all times. Dynam-
ics in this class is summarized as an equilibrium homoge-
nous behavior with exception of annihilations and prompt
recovery from it.

4. SUMMARY AND DISCUSSION

This paper has proposed a minimal model for the evolu-
tion of food webs using a kind of dynamic random graphs
with some biological features, so as to examine the possibil-
ity that mass extinctions may originate complex food web
structure.

It was shown that the system consists of three phases:
frozen, complex and chaotic, one of which emerges accord-
ing to the parameter sets. The dominant factor here deter-
mining the behavior is the balance between the rate of ran-
domization (evolution) and the frequency of accidents (ex-
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Figure 6: Evolution in Class A.N = 300. PaddE = 1.0 ×
10−5. Paccident = 0.01.

tinction). When the rate of randomization is high compared
with accidents, in other words evolution of each species
is sufficiently quick or ecosystems have few accidents, the
food web evolves toward a random graph in which the sys-
tem is in a chaotic state. On the contrary, in a too risky
environment with many accidents, the system could never
evolve its diversity and remains in a frozen state which con-
sists of only autotrophic species.

The most suggestive state is the complex state (Class
B: mid-state). It is inhomogeneous and in nonequilibrium,
and is maintained through a self-amplifying mechanism of
fluctuation: 1) mass extinctions cause deviation from equi-
librium through replicating process, 2) copied vertices ac-
celerate the growth of deviation after the mass extinctions.
Thus, symmetry breaking could occur in this phase through
mass extinctions.

With regard to topology in this class, the degree distri-
bution at every time step seems to have an exponential dis-
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Figure 7: Evolution in Class B.N = 300. PaddE = 3.0 ×
10−3. Paccident = 1.0× 10−3.
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Figure 8: Evolution in Class C.N = 300. PaddE = 0.02.
Paccident = 0.001.

tribution typically rather than power law distribution. This
observation corresponds to empirical data [7]. On the other
hand, when measuring the degree distribution in a long time
scale it seems to have a power law degree distribution as
shown in Figure 4. Though it seems very difficult to collect
such empirical data in a long time scale, these results sug-
gest that the real food webs might have a power law degree
distribution, if longer time scale is in scope. Also, it is worth
noting that in this class the exponentτ of power law in mass
extinction takes a value in1.9 ∼ 2.5, which is parallel with
the empirical data (τ ≈ 2).

These observations lead to the conjecture that real food
webs may be an embodiment of this complex class. That
is, food webs might have been maintained in a nonequilib-
rium complex state through mass extinctions. In contrast to
the mid-phase, the chaotic state with a topology of random
graphs has no empirical data. The chaotic state in this model
is realized under the condition with the low extinction rate
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Figure 9: Cumulative degree distribution at each time step.
N = 300. PaddE = 3.0 × 10−3. Paccident = 1.0 × 10−3.
50 networks are randomly sampled from2× 107 steps. The
data are normalized by the number of edges/vertices (=L/S)
in each network.

compared to the rate of evolution, in other words, under the
quiet and stable environment, which seems contrary to the
nature of ecological systems on earth.

These results support the idea that the main driving force
behind macroevolution might not be the competition among
species known as “the survival of the fittest” based on the fit-
ness. Alternatively, another mechanism might be the main
driving force: the natural selection or accident, which acts
not on individual species but on the segments or clusters
in ecological networks, forms the structure of ecosystems.
That is, as for macroevolution, the unit exposed to selec-
tion might not be individual but the structure of ecological
networks.

The discussion can be summarized in the following two
hypotheses.

• Real food webs may be an embodiment of the nonequi-
librium complex class formed through mass extinc-
tions.

• Degree distribution of the real food webs at longer
time scale may follow the power law.
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