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Abstract

Recent studies in evolutionary computation have focused
on using developmental processes together with genetic al-
gorithms in order to achieve more complex designs. Although
several models have been proposed, their growth dynamics,
and their interactions with evolutionary algorithms are still
poorly understood. One particularly neglected concept in ar-
tificial developmental systems is heterochrony — how evolu-
tion affects development by changing the timing and rate of
developmental events. In this paper we attempt to address this
issue by analyzing heterochronic changes in a well known ar-
tificial developmental model — the cellular encoding model
— by using an heterochrony framework by Alberch et al. We
have conducted experiments by evolving networks to solve a
boolean problem, and analyzed heterochronic changes in both
successful and unsuccessful runs. Our findings show that the
cellular encoding model, due to its properties, strongly affects
the developmental dynamics and the heterochronic changes
that occur during evolution. Our experiments also show that
hypermorphic changes (a kind of heterochronic occurrence)
lead to greater evolvability in successful runs.

Introduction
Recently there has been an increasing interest within the
Evolutionary Computation (EC) community in simulating
developmental processes alongside evolution (Stanley and
Mikkulainen, 2003). This approach has already proved to
be fruitful, allowing evolutionary algorithms (EAs) to gen-
erate more complex designs than traditional approaches, and
it has been applied to a wide range of domains, including,
among others, neural networks (Gruau, 1994) and artificial
creatures (Bongard, 2002). Although several of these mod-
els have been proposed, there is still no throughout under-
standing on how they work, specially on how evolution and
development interact. One particularly important area, and
that we will address in this paper, is to try to understand how
the EA shapes the individuals by rearranging the underlying
developmental events.

In evolutionary and developmental biology, this change in
the rate, timing and order of developmental events caused by
evolution is generally known as heterochrony (Klingenberg,
1997). Heterochrony is a well observed phenomena and pre-
valent in the evolution of species. A well known example

can be found in the Mexican axolotl salamander: most sala-
mander species have two distinct stages of development, a
larval and an adult stage. However, the Mexican axolotl does
not undergo metamorphosis, and achieves sexual maturity
in what would still be considered a larval form. Therefore,
from an evolutionary point of view, we can say that evolu-
tion shaped the axolotl species by “slowing down” their an-
cestor’s development. Using more precise terminology, this
is an example of neoteny. Because examples like this are so
common in nature, it is speculated that heterochrony is one
of the major factors in the evolution of more complex taxa.

Unfortunately, and despite of this, EC studies on hetero-
chrony are still lacking. A recent review paper on artifi-
cial developmental models (Stanley and Mikkulainen, 2003)
identified heterochrony as one of the important dimensions
to pursue in research, but there are still very few published
results on the topic: (Cangelosi, 1999) described hetero-
chronic occurrences in a developmental model based on
genetic regulatory networks (GRNs). The author evolved
neural networks for solving a food foraging problem, and
then compared developmental events between ancestor and
descendant networks. By proceeding this way, he was able
to identify several different kinds of heterochrony, for in-
stance, occurring in cell division events and during axon
growth. (Bongard, 2002) also used a GRN-based model,
but for evolving artificial creatures, with coevolved morpho-
logies and neural networks. The author evolved individuals
for a locomotion task, and then performed mutation experi-
ments to analyze the evolved GRNs. He then observed that
mutation in some individuals caused morphological units to
appear earlier or later compared to the original individual.

Although these previous studies show that heterochrony
does indeed occur in artificial developmental models, there
are still several questions remaining unanswered. First, it is
still not clear to what extent these models support hetero-
chrony, or if they direct evolution to certain kinds of het-
erochronic occurrences more than others. A second, and
perhaps even more important question is to understand how
heterochrony relates to EA performance: for instance, can
we expect certain kinds of heterochronic occurrences to be



more conductive to evolvability than others? As a starting
point for the first question, in a previous paper (Matos et al.,
2005), we have applied a heterochrony framework to a well
known developmental model — the cellular encoding model
developed by Gruau (Gruau, 1994). This framework, by Al-
berch et al (Alberch et al., 1979), offers both a precise ter-
minology and methodology to study heterochronic phenom-
ena in living systems. In this paper, we extend our previ-
ous results, and also attempt to undertake the second ques-
tion. For this, we have used the cellular encoding model to
evolve neural networks to solve a boolean problem, and ap-
plied the framework to a large ensemble of networks. This
allows us to characterize heterochrony in artificial systems
in a more complete way than the previous studies. For the
second question, we have applied the framework to both
successful and unsuccessful experiments, and compared the
heterochronic occurrences between them, to check for any
meaningful differences.

Alberch et al’s framework
The framework by Alberch et al is widely used in biolo-
gical systems for analyzing heterochronic phenomena. This
framework is based on the measurement and comparison of
quantitative traits, for instance, body length, width or height.
The traits are measured as development unfolds, yielding
growth curves. These growth curves can then be compared
between related species for understanding the heterochronic
change involved.
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Figure 1: The formalism of Alberch et al. A trait measure is
plotted against developmental time in the X axis. The solid
line plotted from α to β represents the growth curve for the
ancestor, while the remaining ones possible heterochronic
outcomes for the descendant.

The basis for comparison lies on three metrics that can
be extracted from the growth curves: α — the time when
growth starts, β — the time when growth ends, and K —
the growth rate. Comparing these values between species
yields the outcomes summarized in Figure 1. For instance,

considering only changes in the K parameter, two outcomes
are possible: if the descendant would grow faster than the
ancestor (K would be larger), the corresponding outcome is
acceleration. The reverse process — the descendant grow-
ing slower than the ancestor — is labeled neoteny. For the β

parameter, hypermorphosis means that a descendant grows
for a longer period that its ancestor, while progenesis refers
to the opposite — the descendant stops its growth at an
earlier time than its ancestor. For the α parameter, predis-
placement means that growth starts earlier in the descendant
species when compared with its ancestor, with postdisplace-
ment referring to the opposite. Furthermore, isomorphosis
refers when no change occurs between the growth of the an-
cestor and descendant.

Cellular encoding

Cellular encoding is a developmental model originally pro-
posed by Gruau (Gruau, 1994) for evolving neural networks.
We have chosen this model because it has a proven track for
evolving neural networks, and for a wide range of problems,
including threshold neural networks for boolean problems
(Gruau, 1994) and controllers for robot locomotion (Gruau,
1995). Instead of using GRNs as in (Cangelosi, 1999) or
(Bongard, 2002), the cellular encoding model specifies de-
velopment as a set of graph-rewriting instructions that are
evolved directly. The original model, that we follow in this
paper, only evolved simple threshold networks: the neurons
were threshold neurons with thresholds of either 0 or 1, with
the connections between the neurons being either -1 or 1.

Cellular encoding defines a set of commands for operating
on graphs, that changes the graph as development unfolds.
In its original description, development is described as a se-
quence of these commands, grouped in a Genetic Program-
ming (GP) tree. These trees are then used just as standard
genotypes in a GP system. Each network starts as a single
neuron, with a pointer pointing to the root of the tree. Devel-
opment on each neuron proceeds by executing sequentially
the nodes with the developmental commands. There are dif-
ferent kinds of commands, including commands for dividing
cells, creating new connections, setting thresholds and so on.
For instance, the PAR instruction, when applied to an exist-
ing neuron, creates a new neuron and copies the connections
(both the input and output connections) from the original
neuron to the new one. PAR nodes contain two children,
that are inherited by each neuron (the original and the new
one), allowing for cell differentiation to occur. Development
in the network occurs in a parallel fashion: on each time step
each neuron executes the command pointed by its register in
the tree and moves to the following leaf. The developmental
process is over when all the neurons have reached their final
leaf node in the tree. A summary of the commands is shown
in table 1, and a small example in figure 2.



Table 1: Cellular encoding commands.
Command Description

PAR Parallel division: divides a neuron into two,
with the incoming and outgoing connec-
tions copied to the new neuron.

SEQ Sequential division: divides a neuron into
two, the first neuron inherits the incoming
connections, while the second neurons in-
herits the outgoing connections. A single
connection is added to the two.

DECBIAS Sets the neuron’s threshold to 1.
INCBIAS Sets the neuron’s threshold to 0.
DECLR Decreases the link register by 1. The

link register is an internal variable in each
neuron that points to the current incoming
connection that is being manipulated.

INCLR Increases the link register by 1.
VAL+ Sets the weight of the current incoming

connection to 1.
VAL- Sets the weight of the current incoming

connection to -1.
CUT Removes the current incoming connection.
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Figure 2: Development of a simple genotype in the cellu-
lar encoding model. a) the sample genotype, b) the initial
neuron, c) the network after the first SEQ division, d) the
left neuron executes the PAR instruction, e) the right neuron
executes the SEQ instruction. The VAL+ instructions at the
leaves set the weights of the connections to 1.

Experiments
In his original experiments, Gruau evolved networks only
for solving boolean problems, for instance, the odd-parity
problem and the symmetry problem. In this paper, we de-
cided to use a different boolean problem: the function we
are trying to optimize has 3 inputs and 1 output, with the in-
puts ranging from 000 to 111. All the inputs in this function
produce the output 0 except for two entries corresponding
to inputs 011 and 100, where the output is 1. Our experi-
ments have shown that this problem is particularly difficult
to solve, and therefore could be used as a good problem for
checking relationships between heterochrony and evolvabil-
ity.

The fitness function used consisted of two parts: the first
accounting for the number of right output values, and the
other part rewarding networks with the right number of input
and output neurons. The first part just computes the number
of correct output values, ranging from 0 to 8. The second
part returns the number of input neurons (or 3, whichever is
smaller), and the number of output neurons (or 1, whichever
is smaller). This latter part was deemed necessary to en-
sure that the problem could be solved at all. They are then
weighted (with 0.75 for the number of right output values,
and 0.25 for the number of right input/output neurons), and
normalized between the range [0,1] with 1 as the best fit-
ness. Furthermore, because tree depth tended to increase
rapidly during evolution (tree bloat), we have imposed an
upper limit of 30 neurons in the networks; all the networks
that exceed this limit were assigned a fitness value of 0.

We used a GP system, with both population size and the
number of generations set to 300. Tournament selection was
used, with a tournament size of 7. Crossover was not used,
and all the individuals were mutated with a 70% probability.
The mutation operator follows Koza’s GP original descrip-
tion: if a mutation occurs, first a node is selected at random
in the GP tree; The node is then replaced with a new random
subtree, with a maximum depth of 5. Experiments were con-
ducted with the java-based ECJ software.

We have conducted several evolutionary runs, all with dif-
ferent random seeds. Because of the problem difficulty, sev-
eral of the runs never found any optimal network, and con-
verged into a local optima. For analysis, we kept 20 runs of
all the ones conducted: 10 where the optimum was reached,
and 10 that converged to a local optima.

Analysis
(α,β,K) dynamics
All of the successful runs exhibited similar behavior. On
average, it took 110.7 generations to reach the optimum. A
fitness graph of a typical run can be seen in Figure 3, and an
optimal network in Figure 4.

In order to apply the Alberch et al framework to the model
we needed to choose suitable traits for analysis. We decided



to consider the number of nodes and the average network de-
gree (considering both incoming and outgoing connections),
as they are the essential measures related to the network to-
pology. We also decided to analyze the fitness dynamics,
and treated the intermediate fitness values — how the fit-
ness changes during development — as another trait in the
framework. By proceeding this way, we could then check
if the fitness dynamics played an important role in evolu-
tion, although for evaluation purposes only the fitness value
of the last developmental step is considered. To get an idea
how these traits change with development, Figure 5 shows
growth curves of these 3 traits, in two different individuals.
The dynamics on the right are from the best network in Fig-
ure 4.
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Figure 3: Fitness graph of a typical run.
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Figure 4: An example of an optimal network, found during
our evolutionary runs.

Furthermore, to apply the framework, we need to extract
the three parameters — α, β and K — from the growth
curves. The framework itself does not define a method for
doing this, and several methods have been proposed in the
literature. In biological studies, one common method is to
fit the data to a growth model (for instance, the Von Ber-
talanffy growth curve) by using non-linear regression, and
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Figure 5: Growth curves of the analyzed traits. These cor-
respond to the best lineage taken from Figure 3.

then extract the parameters from the fitted equation. This
works well for biological data because they tend follow well-
known patterns, and there are several sensible growth mod-
els available in the literature. In contrast, as shown in Fig-
ure 5, our growth curves tend to be rather irregular, so this
approach is not feasible. Therefore we decided to use a sim-
pler approach: for our growth curves, we defined α and β as
the developmental time where growth effectively starts and
stops in the data, that is, where changes in the values occur
for the first and last time during development. As for K, we
defined it as the average growth rate. Figure 6 shows the
evolution of these three parameters in one typical, success-
ful run. This example refers to the best lineage, that is, all of
the individuals, starting from the first generation, that gave
rise to the best individual in the last generation.

In this example, we can see that beta increased and K de-
creased through generations. This heterochronic change cor-
responds to the combination of hypermorphosis and neoteny
in Figure 1. One interesting point is that α didn’t change at
all during evolution, for any of the 3 traits, and in any of the
conducted runs. The reasons beyond this are two: the first
reason is that the cellular encoding model represents the de-
velopmental events sequentially in the genotype, following
tree order. Although the mutation operator does choose a
node randomly in the tree, successful mutations tend to tar-
get nodes at a greater depth, because these tend to create
smaller changes in the phenotype, and allow evolution to
occur gradually. A change in the top-level node of the tree
basically amounts to replace the original individual with a
completely unrelated one, so it does not take into account
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Figure 6: Evolution of the α, β and K parameters in the best
lineage, in one of the conducted runs. Top row: number of
nodes; middle row: average degree: bottom row: fitness.

any of the previously found solutions. The second reason is
that in the cellular encoding model, almost all of the instruc-
tions must always change the network in some way; there-
fore it is difficult for the model to generate delays in the
timing of events.

Correlation analysis
We decided further to check if there was any significant cor-
relation in the dynamics, by applying the Pearson’s correla-
tion coefficient to the data:

cor(X ,Y ) =
∑

(Xi−X)(Yi−Y )
(n−1)SX SY

(1)

with Xi and Yi the parameter values of X and Y at generation
i, X and Y as the mean values of X and Y , and SX and SY
as their standard deviation. A coefficient of 1 indicates a
perfect correlation, and -1 a negative perfect correlation.

We have applied this coefficient between individual para-
meters in the same trait (for instance between β and K of
the number of nodes trait), as well as for the same paramet-
ers in different traits (for instance, between β in the number
of nodes trait and β in the average degree trait). Because α

never changes during the runs, α was not considered in this
analysis. We have also computed the coefficients separately
for successful and unsuccessful runs. The results are shown
in Table 2. This data refers to the best lineages only, as in
the example shown in Figure 6.

The correlation table shows how the cellular encoding
model further constrains the developmental dynamics. To
understand it better, first it is necessary to explain how the
model creates connections in the networks: in the cellular
encoding model, there is no explicit command for adding

Table 2: Correlation table for the heterochronic paramet-
ers. Entries in gray represent values where the differences
between successful and unsuccessful runs showed a strong
statistical difference (at the p = 0.05 level). NN - number of
nodes; AD - average degree; F - fitness.

Successful Unsuccessful

Correlation Mean SD Mean SD p

Same Trait:
(β−K)
NN 0.328 0.435 0.165 0.258 0.3211
AD -0.836 0.061 -0.714 0.059 0.0002
F -0.523 0.336 -0.134 0.344 0.0202

Trait-Trait:
NN - AD
β−β 0.983 0.013 0.951 0.043 0.0357
K−K -0.125 0.361 0.109 0.251 0.1086
NN - F
β−β 0.57 0.394 0.124 0.321 0.0127
K−K -0.147 0.398 -0.011 0.234 0.3626
AD - F
β−β 0.597 0.379 0.123 0.316 0.0072
K−K 0.804 0.07 0.727 0.118 0.0965

new connections, although there is a command for remov-
ing them. The only way to create new connections in the
networks is by cell division, that is, by creating new neur-
ons. Therefore the number of nodes trait and average degree
cannot evolve independently, and become highly correlated.
This can be seen in the correlation coefficient of the number
of nodes β and average degree β: in most cases, the growth
of the average degree trait stops growing effectively when
the number of nodes also stops growing, except when re-
move connections commands are found after the last cell di-
vision command. This seems to rarely happen, however, as
it is shown in the table. A similar reason is behind the high
correlation between the average degree’s β and K: as indic-
ated before, our fitness function imposes an upper limit on
the number of neurons that a network may have; this com-
bined with what was explained now effectively defines an
upper limit on the average degree as well. This makes β

and K negatively correlated, in order for the networks not
to exceed this upper limit. This also explains why on the
unsuccessful runs this correlation is lower.

The lower rows in the table, concerning correlations
between the topological traits and fitness are also import-
ant, because they show how the dynamics contribute to the
fitness as whole. The first thing that can be observed is that
the average degree parameters are more strongly correlated
with fitness than the number of nodes. This is to be expec-
ted, because on this problem the connectivity of the network
(the way that the neurons are connected to each other) is
more important for solving the problem than the number of



Table 3: Classification of heterochrony occurrences in all
runs. for the number of nodes trait. I - Isomorphosis; A
- acceleration; N - neoteny; P - progenesis; HM - hyper-
morphosis.

Successful Unsuccessful

Trait Mean SD Mean SD p

NN
I 198.5 16.5 165.6 23.6 0.002
A 48 6.7 64.9 12.4 0.0014
N 51.9 10.2 67.9 12.8 0.0065
P 33 4.3 46.8 8.9 0.0004
HM 47.9 8.3 59.5 13 0.02914

nodes. Other important point is that higher β correlations
between the topological traits and fitness seem important to
assure successful evolution. Unfortunately, because we have
only conducted analysis using this problem so far, at this
time it still difficult to say why this occurs, and if it can be
generalized to other problems.

Occurrence analysis
Based on the previously computed parameters, we further
classified the changes according to the framework, with the
results depicted on Table 3. When applying this framework
a single comparison between an ancestor and a descendant
yield changes in the three parameters simultaneously: for
instance, a mutation could generate an increase in α, a de-
crease in β and an increase in K corresponding to a com-
bined event of postdisplacement, progenesis and accelera-
tion. In order to simplify the analysis, we have decided to
classify the changes in the three parameters as if they were
occurring independently. Also, because the results for all
the three traits were similar, only the number of nodes trait
is displayed.

As it is shown in the table, all possible outcomes (with
the exception of predisplacement and postdisplacement, as
it was explained before) occur with significant values; this,
therefore, shows that the cellular encoding model is able to
generate most kinds of heterochronic events. One interesting
property is that isomorphosis (that is no change in the 3 para-
meters), is the most frequent occurrence in all the runs, and
it occurs with more frequency in successful than unsuccess-
ful runs; on the other hand, all the other possible outcomes
(real changes in the parameters) occur with more frequency
in unsuccessful than successful runs, and these differences
are all statistically significant.

On average, 49% of the occurrences in Table 3 were
real changes (no-isomorphic); this is much lower than what
should be expected, considering the mutation probability
that was used (70%). This means that selection favors iso-
morphic changes in the system (that is, neutral mutations),
and overall it should be favoring isomorphic changes in the

Table 4: Ratios of heterochronic occurrences before the op-
timum was reached, for the number of nodes trait.

Successful Unsuccessful

Occurrence Mean SD Mean SD

I 0.4323 0.089 0.3226 0.2794
A 0.1409 0.0284 0.1920 0.0991
N 0.1837 0.0410 0.2166 0.1222
HM 0.1627 0.0342 0.1273 0.0919
P 0.0802 0.0328 0.1413 0.0721

successful runs. One possible reason for this is that there
could be an increased pressure for neutral changes after the
optimum has been reached. We decided to check if this oc-
curred, by performing the following analysis: on all exper-
iments, we have divided the individuals in the best lineages
into two groups: the first group with all the individuals be-
fore the optimum has been reached, and the second group
with the remaining ones. For the unsuccessful experiments,
we considered the highest reached value as the optimum.
Then, for each group, we have computed the ratios between
each kind of heterochonic occurrence divided by the total
number of occurrences. Statistical tests showed that there is
significant difference between the ratios before and after the
optimum has been reached in 4 of the 10 successful runs.

Nevertheless, as shown in Table 4, the distribution of het-
erocronic occurrences is different among successful and un-
successful runs, although we need more experimental data
so as to improve the reliability of the analysis. The results
are summarized in Table 4. Only the ratios before the op-
timum are shown. In both runs, neoteny is the largest hetero-
chronic occurrence after isomorphosis, but hypermorphosis
is much more common in successful than unsuccessful runs.
It is the second most frequent occurrence in successful runs,
while the least occurring one in unsuccessful runs. This
could mean that hypermorphosis is an important factor for
evolvable runs, at least for this problem.

With this in mind, we decided to check if this occurred
by computing the total changes in fitness that each kind of
occurrence has lead to: for instance, for the neoteny case,
we have computed all the differences in fitness values due
to neotenic occurrences, and divided it by the total num-
ber of neotenic changes. The results are shown in Table
5. These results back up our previous analysis, by show-
ing that hypermorphosis contributed much more to increase
fitness in successful than unsuccessful runs; in contrast, in
unsuccessful runs, acceleration, the most contributing het-
erochronic occurrence, only contributed as half as hyper-
morphosis in the successful case. Therefore, hypermorphic
changes in successful runs are more adaptive than the ones
occurring in unsuccessful runs, but it still not clear in what
way they contribute to evolvability. One possibility is that
hypermorphosis is increasing the search space used by evol-



Table 5: Ratios between changes in fitness and the number
of heterochronic occurrences.

Successful Unsuccessful

Occur. Mean SD Mean SD p

I 0.00006 0.00019 0.00005 0.00017 0.9027
A 0.00704 0.00738 0.00454 0.00648 0.4313
N 0.00803 0.00726 0.00376 0.00456 0.1327
HM 0.01072 0.00866 0.0024 0.00383 0.0124
P 0.00292 0.00193 0.0039 0.00669 0.6616

ution, and therefore making mutations more efficient. Be-
cause hypermorphic changes correspond to increases in de-
velopmental time (β), this also increases the range, in devel-
opmental time, where mutations may occur. This, in turn,
increases the range of phenotypes reachable by mutation, al-
lowing the search space to be more efficiently explored.

Conclusion
In this paper we have shown that the framework by Alberch
et al is a valid method for studying heterochrony in arti-
ficial systems, by applying it to a typical artificial devel-
opmental model, in this case the cellular encoding model.
Our results show that this model constrains developmental
dynamics at least in two ways: first, because the GP trees
are executed sequentially during development, predisplace-
ment and postdisplacement events are very unlikely to oc-
cur; second, because the cellular encoding model can only
create new connections by adding new neurons, develop-
ment of the topological traits are highly correlated.

Our results concerning heterochrony and evolvability are
summarized as follows: first, our results point out that
changes in the average degree parameters are strongly cor-
related with fitness. Second, higher β (growth ending time)
correlations between the topological traits and fitness seems
important to ensure successful evolution. Third, success-
ful runs had more isomorphic occurrences than unsuccessful
runs, and hypermorphic changes lead to better evolvability
in successful runs. However, it is still necessary to apply this
framework to other tasks to see if these results generalize to
other problems. Future work will focus on these topics, and
also extend the current analysis to different kinds of models.
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