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Abstract

The Baldwin effect is known as a possible scenario of the ge-
netic acquisition process of a learned trait without the Lamar-
ckian mechanism. However, it is still controversial how learn-
ing can facilitate evolution in dynamically changing environ-
ments caused by internal factors. Our purpose is to clarify
whether and how leaning can facilitate evolution in dynamic
environments which arise from communicative interactions
among individuals. We constructed a simple computational
model for the evolution of communication ability and its phe-
notypic plasticity. In the model, the levels of adaptive com-
munication, which correspond to the expected fitness value
when the communication results in success, of signalling and
receiving processes are determined by different sets of traits
under the assumption of the correlation between their fitness
and the effects of epistatic interactions among traits. A com-
munication is successful only when the levels of the signaller
and the receiver are the same, and the individuals try to im-
prove their communication levels through the learning pro-
cess in which the values of plastic traits can be modified from
their genetically determined values. The evolutionary exper-
iments clearly showed that the Baldwin effect repeatedly oc-
curred and facilitated the adaptive evolution of communica-
tion in this type of dynamic environments.

Introduction
The Baldwin effect (Baldwin, 1896, 1902) and the role of
phenotypic plasticity in evolution have been drawing much
attention in evolutionary studies (West-Eberhard, 2003;
Crispo, 2007). The Baldwin effect is typically interpreted as
a two-step evolution of the genetic acquisition of a learned
trait without the Lamarckian mechanism: individuals that
have successfully adapted their own trait to the environment
through their lifetime learning processes occupy the popula-
tion (1st step), and then the evolutionary path finds the innate
trait that can replace the learned trait (2nd step) because of
the cost of learning (Turney et al., 1996; Maynard-Smith,
1987). The second step is also known as genetic assimila-
tion (Waddington, 1953), or a kind of genetic accommoda-
tion (West-Eberhard, 2003; Crispo, 2007).

Since the study by Hinton and Nowlan (Hinton and
Nowlan, 1987), the computational approaches on this effect

have contributed to understanding of how learning can af-
fect evolution. An important finding of these studies is that
the balances between the benefit and cost of learning can
smooth the fitness landscape, and as a result, can either facil-
itate or slow down the adaptive evolution. Especially, it has
been reported that there can be situations in which learn-
ing is not always beneficial for genetic evolution (Mayley,
1997; Paenke et al., 2006). For example, if there is no cost
for learning an adaptive trait, there is no difference in the
fitness between the learned one and the genetically acquired
one. In this case, the learning behavior can retard the genetic
evolution of such a trait because the selection pressure can-
not distinguish between these traits. Thus, it is an important
issue how learning can become necessary or unnecessary for
adaptive genetic evolution depending on various states of a
population and its environment.

Recently, we discussed whether and how learning can fa-
cilitate the adaptive evolution of population on rugged fit-
ness landscapes (Suzuki and Arita, 2007b). We constructed
a simple fitness function that represents a multi-modal fit-
ness landscape as typically illustrated in Fig. 1, in which
there is a correlation between the adaptivity of individual
and the effects of epistatic interactions among its traits. The
evolutionary experiments of the individual traits and their
phenotypic plasticity on this landscape clearly showed that
the Baldwin effect repeatedly occurred through the evolu-
tionary process of the population, and facilitated its adaptive
evolution as a whole.

Also, the effects of learning on evolution have been dis-
cussed in the context of dynamically changing fitness land-
scapes. In such situations, we can expect that more complex
scenarios of interactions between evolution and learning
emerge because the balances between the benefit and cost
of learning also change dynamically. While several studies
focused on the effects of changes in the environmental con-
ditions caused by the external factors (Sasaki and Tokoro,
1997; Ancel, 1999), we can also assume more complex sit-
uations in which the fitness landscapes can be changed by
internal factors (Suzuki and Arita, 2004). The evolution and
emergence of communication is one of the typical cases of
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Figure 1: A rough image of the fitness landscape. The
horizontal axis corresponds to the average phenotypic value
among all phenotypes. Each peak (in gray) corresponds to
the fitness which can be acquired when each trait group be-
comes adaptive. The black line is the actual fitness. As the
fitness of the population increases, it tends to need to cross
deeper valleys to reach the next optimum.

this situation because the fitness of the individuals are de-
termined by the benefit of the successful communications
among them. This topic has been discussed in ALife stud-
ies (Noble et al., 2001) from various viewpoints such as
the emergence of lexicons through language games among
agents (Steels, 1996), the adaptivity and diversity of the mat-
ing signals (Werner and Todd, 1997), the emergence of com-
munication in embodied agents (Nolfi, 2005), the complex-
ity of the birdsongs grammar (Sasahara and Ikegami, 2007)
and so on. Also, several studies discussed the effects of
learning on evolution in the context of language evolution
(Arita and Koyama, 1998; Kirby, 2002; Munroe and Can-
gelosi, 2002; Yamauchi, 2007; Watanabe et al., 2008). For
example, Watanabe et al. recently constructed a computa-
tional model into which both cultural learning of language
and genetic evolution of language ability are incorporated
(Watanabe et al., 2008). They found that the factors specific
to language evolution (such as adaptive shift in language or
overlearning to a variety of parents) are important for the
occurrence of the second step in the Baldwin effect.

Among various roles and aspects of communication these
previous studies have focused on, the frequency dependence
of the individual fitness is one of the common key mecha-
nisms in the evolution of communication. Here, we assume
a communication as a process in which one individual gen-
erates and sends a kind of signals, then another individual
receives and interprets that signal, which can potentially in-
crease the fitness of both individuals. For example, if the
individuals can correctly interpret the signals generated by
conspecific ones, there is a positive frequency dependent se-
lection on them in that the fitness of such individuals in-
creases as they become more common. This selection pres-
sure facilitates the increase in the number of them in the pop-
ulation, and thus increases the communicative coherence in

the population. Nowak discussed the evolution of language
(grammar) by using a simple mathematical model in which
the language of each individual can genetically or cultur-
ally evolve depending on the success in communication with
other individuals (Nowak et al., 2001). The results showed
that if the accuracy of the language acquisition through ge-
netic or cultural evolution exceeds a certain threshold, the
dominant language emerges as a result of positive frequency
dependent selection on that language. However, it is ex-
pected that once the population is occupied by such indi-
viduals, new or different individuals are difficult to express
their adaptivity and invade into the population even when
their communication is more adaptive than the existing one
because of the strong positive selection pressure on the ex-
isting individuals.

Furthermore, we focus on the difference in the process-
ing mechanisms between signalling and receiving behaviors,
which has often been overlooked in previous studies. The
generation and interpretation of a signal are different ecolog-
ical and cognitive behaviors and the individuals use the dif-
ferent set of traits for generating and sending a signal from
that for receiving and interpreting it in general. In addition to
the fact that animals have different phonatory and auditory
organs, it is also known that the generation and interpreta-
tion ability of human language depend on different parts of
the human brain such as Broca’s and Wernicke’s areas in the
cortex although there are strong interactions between them
(Deacon, 1997). It means that these mechanisms can evolve
separately at least in part, and thus the individuals are not
always able to correctly interpret the signal generated by the
individual itself or conspecific ones. The frequency depen-
dent selection works negatively on such communicatively
incoherent individuals. However, how learning can affect
evolution under the assumption of these dynamic factors has
not been clearly discussed so far.

Our purpose is to clarify how learning can facilitate evolu-
tion in dynamically changing environments caused by inter-
nal factors. For this purpose, we constructed a simple com-
putational model for the evolution of communication ability
and its phenotypic plasticity by using the fitness function
adopted in (Suzuki and Arita, 2007b). In the model, the lev-
els of adaptive communication, which is the expected fitness
value when the communication results in success, of signal-
ing and receiving processes are determined by different sets
of traits under the assumption of the correlation between
their fitness and the effects of epistatic interactions among
traits. The communication is successful only when the com-
munication levels of the signaller and the receiver are the
same, and the individuals try to improve their communica-
tion levels through the learning process in which the plastic
traits can be modified from their genetically determined val-
ues. The evolutionary experiments clearly showed that the
Baldwin effect repeatedly occurred and facilitated the adap-
tive evolution in this kind of dynamic environments.
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Figure 2: Example of genetic information and communica-
tion (M=5). The underlined values int are plastic traits.

Model
The level of adaptive communication
There areN individuals in a population and each individ-
ual has2M traits ti (i=0, · · ·, 2M -1) as shown in Fig. 2.
Each genegi (i=0, · · ·, 2M -1) in a2M -length chromosome
GI represents the initial value of the corresponding traitti
which consists of an integer value within the range[1,M ].
Also, each individual has another2M -length chromosome
GP which decides whether the corresponding trait is plastic
(“1”) or not (“0”). Each traitti whose corresponding bitpi

in GP equals to “1” can be changed through the communi-
cation process.

Among2M traits, the former part ofM traits determines
the cognitive ability for generating and sending signals to
others, and the latter part ofM traits determines the cogni-
tive ability for receiving and interpreting signals from oth-
ers. Thus, this model can be regarded as a coevolutionary
model of traits for sending and receiving signals. Here, we
define the individual’s level of adaptive communication of
signalling (receiving) a signalLs (Lr) as follows:

Ls(Lr) = arg max(f(n)), (1)

f(n) =
{

n if num(n) ≥ n,
0 otherwise,

(2)

where num(n) is the number of traits of which pheno-
typic value isn among the former (latter) half ofM traits.
arg max(f(n)) is the value ofn which maximizes the func-
tion f(n). This function is basically similar to the one
adopted in (Suzuki and Arita, 2007b), and typically de-
scribes the following situation: The correspondingM traits
of the individual are divided into several groups each in
which the phenotypic values are identical. The trait group
of n expresses its ability for sending (receiving) the signal
of the leveln if its group size (num(n)) is greater than or
equals ton. The actual level of adaptive communication
is defined as the highest value among adaptive trait groups.
Fig. 2 shows an example of the levels of adaptive commu-
nication. Eq. (1) and (2) show that the higher the level of
a trait group is, the larger its minimum size that is needed

Table 1: Example of the set of pairs (N=8). Each number
represents the serial number of the individual.

Signaller 2 1 7 4 6 3 5 8
Receiver 8 7 3 1 2 5 6 4

for its ability to express becomes. The increase in the min-
imum size means that such a group becomes difficult to be
acquired because it needs interactions with larger number of
phenotypes. Thus, there is a positive correlation between the
level of adaptive communication and the effects of epistatic
interactions.

Communication and lifetime learning
In each generation, theN pairs of a signaller and a receiver
are randomly arranged under the condition that each indi-
vidual becomes a signaller once and also becomes a receiver
once as shown in Table 1. The communication is successful
only when the communication level of the signaller (Ls) and
the receiver (Lr) are the same. Both individuals obtain the
following fitness value:

fitness =
{

L if Lr = Ls(= L),
0 otherwise,

(3)

whereL is the shared level between the signaller and the
receiver. Fig. 2 shows an example image of success in com-
munication. The individuals obtain the fitness value 2 be-
cause both communication levels of signaller and receiver
are 2.

For each pair, theC + 1 steps of a learning and a com-
munication are conducted. In the initial step, the fitness is
evaluated by using the initial communication levels of the
signaller and the receiver, which are determined by the ini-
tial phenotypic valuesgi. Then, during theC steps, both
individuals try to communicate by using their correspond-
ing traits ti all of which phenotypic values are determined
by the following equation:

ti =
{

gi + rand() if pi = 1,
gi otherwise,

(4)

whererand() is the function that returns a randomly se-
lected value from{-1, 0, 1}. Note that, if a generated phe-
notypic value exceeds its domain, another randomly selected
value is added to the initial value. This equation shows that
the values of plastic traits can slightly deviate from their ge-
netically specified values at each step.

The actual fitness of the individual at each stepc (c =
1, · · · , C + 1) is defined as the highest value among allc fit-
ness values which are previously measured during the com-
munications in each pair. It means that, in each step, the
pairs first try to communicate by using the sets of generated
traits, and then adopt the most adaptive trait sets so far.
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Figure 3: Evolutionary dynamics without learning (C=0). (a) Average lifetime (innate) fitness. (b) Lifetime (innate) fitness of
the best individual. (c) Potential fitness of the best individual.

Evolution

This learning and communication process ofC + 1 steps is
conducted in all pairs. The lifetime fitness of each individ-
ual, which is used for reproductive process, is defined as the
average among the fitness values in its all participating steps.
Also, so as to measure the innate adaptivity of each individ-
ual, we pick up the (genetically determined) fitness values at
the initial step in its all participating processes, and defined
the average among them as the innate fitness.

The offsprings in the next generation are selected by the
“roulette wheel selection” (in which the probability that an
individual will be chosen as an offspring is proportional to
its lifetime fitness) from the current population. Then, every
gene of all offsprings is mutated with a probabilitypmi for
GI andpmp for GP respectively. A mutation inGI adds a
randomly selected value from{-1, 1} to the current value.
If a generated value exceeds its domain, another mutation is
operated on the original value again. A mutation inGP flips
the current binary value.

Results

We conducted evolutionary experiments using the follow-
ing parameters:N=200,M=10,pmi=0.002 andpmp=0.005.
The initial population was generated on condition that ini-
tial values inGI were 1 and the genetic values inGP were

randomly decided. We adopted this initial condition so as
to observe the adaptive evolution from the state in which the
individuals have established a successful communication but
their level is the lowest.

Experiments without learning

First, we conducted experiments without learning process
(C=0). Fig. 3 (a) shows a typical example of the evolution
of the lifetime fitness over4000 generations. The horizontal
axis represents the generation, and the line shows the av-
erage lifetime fitness at each generation. In this case, the
lifetime fitness is the same as the innate fitness. We see that
the average lifetime fitness did not increase from the initial
value 1.0, thus the population was never able to improve its
shared communication level.

We also depicted the lifetime fitness of the best individual
(who has the best lifetime fitness among individuals in each
generation) in Fig. 3 (b), and its potential fitness in Fig. 3
(c). The potential fitness is the expected value of the fitness
when the individual tries to communicate with the focal in-
dividual itself. In Fig. 3 (b), we see that the lifetime fitness
was basically 1.0 but often increased to 1.5. It means that
there appeared several adaptive individuals who succeeded
in establishing higher communication level of 2 once during
their lifetime, but they could not invade into the population.
There are supposed to be two factors for this phenomenon.
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Figure 4: Evolutionary dynamics with learning (C=20). (a) Average lifetime (upper) and innate (lower) fitness. (b) Lifetime
(upper) and innate (lower) fitness of the best individual. (c) Potential fitness of the best individual.

The first is the strong positive frequency dependent selection
on majority individuals. The appeared individuals mostly
fail in communication and disappear at the next generation
because they rarely have another chance to meet a similar
partner again because they are minority. The second is the
negative selection pressure on them caused by the incoher-
ence of their communication levels between signalling and
receiving processes. As we see in Fig. 3 (c), their potential
fitness was 0. It means that the increase in their proportion
rather decreases their own fitness. In addition, we also ob-
serve that both best lifetime and potential fitness sometimes
reached 2; but such individuals also failed to invade. This is
supposed to be due to the fact that the effect of the first factor
was quite strong even when the second factor was resolved
by chance.

We can say that the population is never be able to im-
prove its shared communication level due to these strong
frequency dependent selection pressures if the individuals
do not learn.

Experiments with learning

Next, we conducted experiments with learning. Figure 4
shows the typical transitions of the lifetime, innate and po-
tential fitness in case ofC=20.

Fig. 4 (a) clearly shows that the average lifetime fitness
gradually increased to 4.0. How could the population suc-

cessfully increase its shared level of adaptive communica-
tion despite the fact that the population was never able to
increase in the case without learning? This adaptive evo-
lution was due to the repeated occurrences of the Baldwin
effect. In Fig. 4 (a), we see the several transitions of the
average fitness through which the lifetime fitness increased
while the innate fitness decreased, and then the innate fitness
subsequently caught up with the lifetime fitness. Each tran-
sition can be regarded as a single occurrence of the Baldwin
effect.

Here, take the evolution of the population from around
1800th to 2700th generation for example. Around the
1800th generation, both the average lifetime and innate fit-
ness is almost 3.0; all individuals innately established the
adaptive communication level of 3. From around 1900th to
2500th generation, the lifetime fitness slowly increased to
about 3.5, and the innate fitness gradually decreased. This
phenomenon can roughly be regarded as the first step of the
Baldwin effect in that the adaptive property of the whole
population became dependent on learning process.

The transitions of the lifetime, innate and potential fit-
ness of the best individual in Fig. 4 (b) and (c) give us
more detailed information about the evolutionary dynamics
of the population during this period. From the 1900th gener-
ation, the best lifetime fitness increased to almost 4.0 while
the best innate fitness basically remained 3.0 but sometimes
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fluctuated. It shows that these best individuals could im-
prove their communication level through learning without
discarding successful communications with the majority in-
dividuals. It is because that they start to communicate with
the level 3 at the initial step, which is coherent with the com-
munication level of the majority individuals, and then try
to establish higher level of adaptive communication through
learning depending on the level of the partner. Thus, their
fitness are basically larger than those of majority individu-
als 3.0. This benefit of learning enabled these individuals to
gradually invade into the population. This can be regarded
as the typical first step of the Baldwin effect in that the in-
dividuals which could obtain higher level of communication
through learning process occupied the population.

Furthermore, if we look at the fluctuation of the best in-
nate fitness in detail, we see that it gradually tended to in-
crease to 3.5 especially after the 2150th generation. This
means that as the individual of which the innate levels of
signalling and receiving were 3.0 and 4.0 (or 4.0 and 3.0)
became more adaptive and invaded into the population. In
this model, the more quickly an adaptive communication
level is established, the larger the lifetime fitness becomes
because it is defined as the average values over all steps.
Thus, when the most of individuals can express the com-
munication levels of 4 through learning process, it becomes
beneficial for the individuals to genetically acquire the com-
munication level of 4 because they can establish adaptive
communications more quickly. In this sense, there is the im-
plicit cost of learning in this model.

We also see the gradual decrease in the average innate fit-
ness and it became about 1.5 at around the 2500th generation
as shown in Fig. 4 (a). This is due to the decrease in the po-
tential fitness of the best individuals as shown in Fig. 4 (c).
The increase in their number brought about the decrease in
the expected innate fitness because they cannot establish the
communication with each other without the help of learning.
In this sense, the population became more strongly depen-
dent on learning process during the latter generations of this
step despite that the genetic assimilation of either level of
communication occurred as explained above.

Finally, when such individuals occupied the population,
the individuals of which both communication levels of sig-
nalling or receiving were 4.0 appeared at around the 2500th
generation and then rapidly occupied the population until
about the 2700th generation. Both the innate and potential
fitness caught up with the lifetime fitness. This is also due
to the cost of learning explained above. We can say that
the typical second step of the Baldwin effect occurred dur-
ing this period in that the established communication level
of 4 through learning in the first step became genetically ac-
quired in this step completely.

We observed the similar scenarios of the Baldwin effect
around the 1-200th and the 250-650th generations, and each
process brought about the increase in the communication

level of the whole population. In other words, the result of
the Baldwin effect became the scaffold for the next Baldwin
effect to occur. We also observed that each scenario took
longer generations as the lifetime fitness increased because
of the increase in the epistasis of adaptive trait group. It also
should be noted that when we conducted the experiments
with the condition in which all traits were always plastic, it
tended to took longer generations for the Baldwin effect to
occur (not shown). This means that the evolution of the phe-
notypic plasticity has an important role for the occurrence of
these scenarios although we did not observe significant in-
crease and subsequent decrease in the proportion of plastic
traits in our model.

As a whole, we can say that the Baldwin effect repeatedly
occur and facilitate the adaptive evolution in this kind of a
dynamic environment.

Conclusion
Hinton and Nowlan’s pioneering work (Hinton and Nowlan,
1987) clarified that learning can facilitate the evolution on
a “needle in a haystack” fitness landscape, and our previ-
ous work (Suzuki and Arita, 2007b) also showed that the
Baldwin effect also facilitate evolution on a static but rugged
fitness landscape as in Fig. 1. In this paper, we further
discussed whether and how leaning can facilitate evolu-
tion on dynamically changing fitness landscapes which arise
from communicative interactions among individuals. We
have constructed a simple evolutionary model of the adap-
tive communication levels and their phenotypic plasticity in
which the levels of signalling and receiving processes are
determined by different sets of traits under the assumption
of the correlation between their adaptivity and the effects of
epistatic interactions among traits.

The evolutionary experiments showed that the population
with learning successfully increased its shared level of adap-
tive communication while the population was never able to
increase in the case without learning. Here we summarize
the observed scenario of evolution by using an image of tran-
sition of the population on the dynamic fitness landscape in
Fig. 5. The innate communication levels of each individual
is represented as a connected set of a circle (signalling) and
a square (receiving) filled in dark gray, and the x-axis corre-
sponds to the value of their levels (L or L + 1). The learned
level of the individual is also represented as an open circle or
square, which is connected with the innate one. Each arrow
represents the communication between two individuals. The
vertical axis roughly represents the fitness of the individuals
which has corresponding level of adaptive communication.

Let us start from the state in which all individuals have
innately established the adaptive communication level ofL
as shown in Fig. 5 (i). In this state, the population have con-
verged to a single peak of the levelL. The individuals which
can improve their level fromL to L+1 through learning pro-
cess invade into the population as in Fig. 5 (ii). It is because
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Figure 5: An image of transition of the population on the dynamic fitness landscape.

that such individuals can improve their communication level
without discarding successful communications with the ma-
jority individuals. This corresponds to the phenomenon that
the individuals reach out one of their communication levels
to another peak of the levelL+1 by using their phenotypic
plasticity.

When the most of individuals come to establish the com-
munication levels ofL+1 through learning process, the in-
dividuals which innately acquired either level ofL+1 grad-
ually invade into the population due to the implicit cost of
learning as in Fig. 5 (iii). During this process, the peak of
the levelL + 1 gradually becomes higher and that of the
level L becomes lower because the individuals have begun
to innately use the communication level ofL+1. At the same
time, the innate fitness decreases because they are commu-
nicatively incoherent.

Finally, as in Fig. 5 (iv), the individuals of which both
innate levels areL+1 occupy the population. The genetic
assimilation of learned traits completely occurs and the peak
of the levelL disappears at last. This scenario can repeat-
edly occur and an occurrence of the Baldwin effect can be-
come the scaffold for the next Baldwin effect to occur. This
implies that the repeated occurrences of the Baldwin effect
might be a general phenomenon which can emerge in both
static and dynamic environments.

As explained before, the Baldwin effect has sometimes
been discussed in the context of language evolution (Pinker
and Bloom, 1990; Nowak et al., 2002; Kirby, 2002). Lan-
guages are composed of several levels of syntactic represen-
tations as Chomsky clarified (Chomsky, 1957). The level of
communication in this model corresponds to a kind of finely
classified ones of such syntactic representations. Pinker
and Bloom pointed out that comprehension abilities do not
have to be in perfect synchrony with production abilities be-
cause comprehension can use cognitive heuristics to decode
word sequences even in the absence of grammatical knowl-
edge, and a selection pressure on such an adaptive decoding
process bring about a kind of innate grammatical module
through the Baldwin effect (Pinker and Bloom, 1990). The
process in which the learned level for receiving becomes in-
nate one can be regarded as an example of such scenario.

Dennett points out that the Baldwin effect is essential to ex-
plain the genetic acquisition process of a complex trait such
as the innate ability for language acquisition, which is im-
possible to acquire by evolution alone (Dennett, 2003). He
regards Hinton and Nowlan’s experimental result (Hinton
and Nowlan, 1987) as a typical case of such a scenario. Our
results further supports in part his claim in that the Bald-
win effect can occur in the context of the evolution of com-
munication among individuals. On the other hand, Deacon
also points out that the genetic evolution that can support
symbolic communication and the cultural evolution of lan-
guage can mutually facilitate their evolution, although learn-
ing becomes more and more important in his scenario (Dea-
con, 2003). Although the cultural evolution of the learned
traits is not introduced into our model, the repeated occur-
rences of the Baldwin effect supports his claim in that the
acquired adaptive communication through learning process
brings about the genetic evolution of the innate communi-
cation ability, which results in a further acquisition of more
adaptive communication through learning process.

We believe the observed scenarios reflect the general dy-
namics of interactions between evolution and learning in dy-
namically changing environments caused by internal factors.
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