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Abstract Artificial embryogenies are an extension to evolutionary

algorithms, in which genotypes specify a process to grow phenotypes.
This approach has become rather popular recently, with new kinds of
embryogenies being increasingly reported in the literature. Nevertheless,
it is still difficult to analyze and compare the available embryogenies,
especially if they are based on very different paradigms. We propose a
method to analyze embryogenies based on growth dynamics, and how
evolution is able to change them (heterochrony). We define several
quantitative measures that allow us to establish the variation in growth
dynamics that an embryogeny can create, the degree of change in
growth dynamics caused by mutations, and the degree to which an
embryogeny allows mutations to change the growth of a genotype, but
without changing the final phenotype reached. These measures are based
on an heterochrony framework, due to Alberch, Gould, Oster, &
Wake (1979 Size and shape in ontogeny and phylogeny, Paleobiology, 5(3),
296–317) that is used in real biological organisms. The measures are
general enough to be applied to any embryogeny, and can be easily
computed from simple experiments.We further illustrate how to compute
these measures by applying them to two simple embryogenies. These
embryogenies exhibit rather different growth dynamics, and both allow
for mutations that changed growth without affecting the final phenotype.
1 Introduction
Artificial embryogeny (AE) is a subfield of evolutionary computation (EC) concerned with the study
and implementation of developmental processes, and their integration with evolutionary algorithms
(EAs) [28]. In contrast to traditional EAs—where there is basically no distinction between the
genotype and phenotype—AE genotypes employ generative representations, that is, the genotypes
specify a process to grow phenotypes. This approach allows EAs to evolve phenotypes with a much
higher degree of complexity than traditional representations [11]. This makes AE research an ex-
tremely important pursuit in current evolutionary computation.
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AE systems have been already proposed for a wide range of problems and designs. Experimental
tests have shown that AEs typically outperform traditional EAs when evolving 2D patterns [3] and
artificial creatures [11, 16]. These results make the field look very promising, and new embryogenies
are constantly being reported in the literature. Unfortunately, this surge of activity is occurring at the
expense of analysis and formalization, which is obviously becoming more necessary. Despite all of
these early successes, at this time we still do not have any solid theory or model to explain what
makes AEs work. Designing embryogenies is still mainly a work of intuition and of trial and error,
instead of a systematic inquiry driven by theory. This is understandable given that AE is still a very
young discipline, but eventually we will have to move beyond this experimentation stage, and build a
good theoretical framework for the field.

Designing a general framework for AE is a difficult task, especially if we consider the huge di-
versity of all the existing implementations. Because the embryogenies are implemented in an arti-
ficial medium (viz., computers), AE researchers have the freedom to design them as they please. In
fact we are not even limited to simulating biological development closely, and some of the proposed
embryogenies employ mechanisms very different from natural development. Nevertheless, all of
these embryogenies do share some common assumptions; by focusing on these assumptions alone it
is possible to devise a theoretical framework that includes all the embryologies. In this article we
propose a general analysis framework that does precisely this. Our framework allows us to charac-
terize embryogenies in a quantitative way, regardless of their assumptions, and it can be easily applied
by performing simple experiments. We believe that this approach is particularly important when
there is a need to compare very different embryogenies.

In AE most of the existing analysis tools can be roughly classified into two groups. Each group
works at a different level of organization, and they have very different objectives. In one hand, we, as
AE researchers, want to understand the mechanisms that make our embryogenies work, and what
makes them behave the way that they do. By mechanism here we mean the overall system used to
simulate development—for instance, models of genetic regulatory networks (either discrete or contin-
uous), and Lindenmayer systems. The tools used for this task must work at this level, and there-
fore are confined to the embryogeny’s specific mechanism. A good example is modularity analysis:
It is generally agreed that modularity is a required feature for achieving complex designs [3, 11],
and some modularity measures have already been proposed [10]. Unfortunately, it is difficult to
establish a measure of modularity without taking into account either the mechanism used by the
embryogeny or the type of design that is being evolved. These measures may help to understand
modularity in the context of a few isolated embryogenies or designs, but they do not allow us
to compare degrees of modularity between embryogenies that use very different mechanisms. The
framework that we will be presenting here works at an upper level of organization, and does not
make any specific assumptions on the mechanisms employed by the embryogenies. Granted, it also
does not allow us to explain precisely how they work, so analysis tools, such as the ones referred to
above, will always be important. Our framework is meant to be complementary to these tools and
not to replace them.

On the other hand, we can analyze embryogenies from an evolutionary point of view, with respect
to how they perform when evolved. Studies of this sort may treat the embryogeny as a ‘‘black box,’’
and evolve different embryogenies for a set of tasks. The results of the embryogenies can then be
empirically compared, for instance, on the number of fitness evaluations required to converge, or on
the quality of the generated phenotypes. Studies that employ this approach include the work of
Bentley and Kumar [3], Hornby and Pollack [11], and Komosinski and Varga [18]. Bentley and
Kumar [3] evolved four different embryogenies for creating 2D tessellating tiles of different sizes. In
this case their major point of comparison was how well the embryogenies evolved, and how that was
related to problem difficulty. They were able to show that some of the embryogenies simply could
not solve the problem as the tile size increased, and how that was related to the mechanism used.
Hornby and Pollack [11] and Komosinski and Varga [18] also performed empirical studies, but this
time on artificial creatures. Both used embryogenies of increasing complexity on a fixed set of tasks,
which included walking in both studies, and jumping in the study by Komosinski and Varga. Both
Artificial Life Volume 15, Number 2132



Figure 1. Artificial embryogenies viewed as developmental trajectories. (a) Two embryogenies (displayed as solid and
dotted lines) generate different trajectories in the search space. (b) Variation operators, like the mutation operator
(depicted with an M), change the trajectories, and therefore the final phenotype. (c) An example of a mutation (depicted
as an arrow from G1 to G2) where the same phenotype is reached, but the trajectory is changed.

Heterochrony and Artificial EmbryogenyA. Matos, R. Suzuki, and T. Arita
studies compared the embryogenies on the average fitness and convergence, and in the case of the
study by Hornby and Pollack, a detailed comparison of the behavior of the mutation operator was
also included. Our analytical framework is closer to these empirical studies, in that we will mainly be
dealing with the phenotypes an embryogeny generates.

In our view, there are mainly two problems with the empirical studies mentioned above. The first
one is that they are always performed in an evolutionary context, so they don’t characterize an em-
bryogeny per se. AEs are difficult to predict, so we can reasonably expect that some embryogenies
will be better at some tasks than others. Therefore, empirical studies performed under evolution may
easily dismiss an embryogeny as not good, just because a relevant task was not part of the study. In
order to avoid this problem, our approach characterizes embryogenies by studying their behavior
when generating or mutating phenotypes at random. From these random experiments we are able to
derive a probabilistic model of how the embryogeny behaves. These models can then be further used
to group related embryogenies together, and to check how they perform for given tasks.

A second, more subtle problem is that these studies do not consider the actual growth process at
all. In an AE, a genotype is not mapped to one phenotype only, but to a temporal sequence of
phenotypes. This temporal sequence represents the growth of the genotype, starting with its birth,
until the last step in the sequence, its final stage. The previously mentioned studies are exclusively
focused on these final stages, because these are the ones that are usually employed for fitness eval-
uation. Nevertheless, this last stage is the outcome of a complex process that usually (although not
always) is dependent on the previous developmental steps.1 We can reasonably expect that different
embryogenies will exhibit different dynamics in these temporal sequences, and that some dynamics
may be more adaptive than others. In a previous study [20], we have already shown that this actually
happens with the cellular encoding embryogeny, so we think that the study of these dynamics should
not be neglected.

In our view, a development process is better understood as a trajectory being run over the search
space, where each genotype specifies a trajectory. Different embryogenies will have different biases
on their translation process, so they will generate different trajectories in the search space (Figure 1a).
Variation operators like mutation and crossover explore the search space by changing development
trajectories, a process called heterochrony2 (Figure 1b). Our analysis methodology is grounded on
this concept of developmental trajectories, and we will characterize embryogenies by exploring how
they generate and manipulate them. In order to do this, we have adopted an existing quantitative
1 An important exception is Hornby and Pollack’s Genre embryogeny described in their empirical comparison study. Growth in this
embryogeny does not work directly with the phenotypes, but with an intermediate representation; it is this representation that is changed
during growth, so the phenotypes in adjacent time steps can be widely different from each other. Our framework probably is not very
useful for this kind of embryogenies, but there are only a few that actually work like this.
2 As explained by Klingenberg [14], heterochrony is a rather elusive concept, and different researchers employ different definitions.
Notably, heterochrony is defined differently in evolutionary and developmental biology. The definition that we are using here is closer to
the evolutionary biology one, as employed by Alberch et al. [1], but not completely equivalent. We will get back to this point in Section 2.
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framework from evolutionary biology, Alberch et al.’s framework [1], to our artificial embryogenies
context.

Conceptually, our work is similar to a study by Stanley and Miikkulainen, where they already
proposed a scale to measure heterochrony in AEs [28]. The main difference between their study and
ours is that Stanley and Miikkulainen’s work is only a qualitative classification, whereas we will de-
scribe ways to actually measure heterochrony quantitatively. We will explore how our framework and
Stanley and Miikkulainen’s work are related later in this article.

The remainder of this article is organized as follows: Section 2 gives a conceptual overview of our
approach. Here we will review Stanley and Miikkulainen’s work, introduce Alberch et al.’s framework,
and explain the required changes to the framework for using it with AEs. Section 3 builds on Sec-
tion 2, and presents the framework in a formal way. In Section 4 we will illustrate how to use the
framework by applying it to two simple embryogenies. Section 5 concludes the article. In an appen-
dix, we also include a detailed description of the two embryogenies.
2 Defining and Measuring Heterochrony

2.1 Stanley and Miikkulainen’s Heterochrony Dimension
In a recent review article [28], Stanley and Miikkulainen presented a broad framework to classify
artificial embryogenies. Their goal was not only to classify existing embryogenies, but also to point
out further research directions that they believed were not properly explored. With this in mind, they
proposed a space of five distinct categories, or dimensions, by which the embryogenies could be char-
acterized. One of these dimensions was heterochrony, defined in a way conceptually similar to the
definition employed in this article. Therefore it is important that we review their definition first.

According to Stanley and Miikkulainen, heterochrony is the change, over generations, of the
timing and ordering of events in an embryogeny. It is well known that natural embryogenies display
extreme flexibility in their growth, mostly with respect to the time and ordering of developmental
events [9, 26]. For instance, there are well-known accounts of species where whole growth stages
were removed by evolution, but which still have kept the adult form of the original species. The
authors argue that this flexibility should be important for AEs as well, and they point out two
reasons for this. The first one is that flexibility in development may lead to important phenotypic
innovations: It is widely believed that some of the major innovations in evolution were caused by
simple changes in the underlying growth process. The other, more subtle reason is that heterochrony
allows evolution to explore neutral regions of the search space more easily. This can be better
understood by going back to the concept of ontogenetic trajectories, depicted in Figure 1. In an AE,
mutation allows the EA to explore the search space by changing the growth trajectories of the
genotypes. Occasionally, a mutation may occur that radically changes the ontogenetic trajectory, but
retains the same phenotype in the last stage of growth (Figure 1c). Usually only the last stage of
growth is employed for fitness evaluation, so this new mutated genotype will have the same fitness as
the previous one (in other words, it is a neutral mutation). Nevertheless, they are not the same, but as
they have the same probability of being selected, the following mutations may generate two radically
different phenotypes. This phenomenon, the authors argue, may make the exploration of the search
space more efficient. Although the role of neutrality in artificial evolution is still greatly debated [15],
there are at least a few studies showing that increased neutrality is beneficial [27, 33], so this can be
an important factor in AEs.

Based on these concerns, Stanley and Miikulainen proposed a scale to measure heterochrony in
AEs, and classified several of the published embryogenies on this scale. Embryogenies on the
extreme left of the scale do not have any mechanisms that allow evolution to change the order or
timing of events easily; heterochronic changes in these embryogenies usually require a major rewrite
of the genome. Embryogenies that allow heterochronic changes to occur more easily were placed in
the middle of the scale; the best embryogenies, which would allow for mutations that can change the
developmental process while retaining the same final phenotype, would have been placed on the
Artificial Life Volume 15, Number 2134
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right. Their classification of the existing embryogenies is as follows (the references have been
changed to match this article):
Art
A few systems [2, 4, 13, 22] cannot use heterochrony because steps in their development
are not parameterized or modulated in any way. Thus, changing the timing of developmental
events in these systems would require altering the entire genome. In contrast, the majority
of AE systems implement some kind of parameterization or signal modulation system,
allowing developmental phases to taper off or initiate at different times. Bongard’s [5] system
is placed farthest to the right because it is the only system with a reported analysis of
heterochrony. No system has implemented radical shifts in timing or the elimination of entire
phases of development without disrupting the final product, as seen in natural evolution.

—Stanley and Miikkulainen [28]
The reader should note, however, that this classification is meant to be only a broad, qualitative
overview. Systems like the ones by Belew and Kammayer [2] or Kitano [13] can be placed, without
any doubt, at the leftmost end of the scale, as they definitely do not contain any heterochronic mecha-
nism. Most existing systems, however, do implement at least one of the mentioned mechanisms, and
they were all piled together in the middle of the scale. Stanley and Miikkulainen’s definition does
not offer any further indication how we could grade these systems more finely, or how we could
recognize a system that implements the sort of neutral mutations they describe. We agree with
Stanley and Miikkulainen’s definition in that these properties are important to measure, but we also
believe that we need a quantitative definition in order for their scale to be really useful. With this in
mind, in the next section we will introduce Alberch et al.’s framework, which is used to quantitatively
measure heterochrony in natural embryogenies. We will later rephrase Stanley and Miikkulainen’s
concerns within this framework, and that will finally allow us to define these concepts quantitatively.
2.2 Alberch et al.’s Framework
In evolutionary biology there is an established procedure to measure and classify heterochrony in
living organisms. This framework was proposed by Alberch, Gould, and colleagues in the 1970s [1].
To give an idea how this framework is applied, we will first describe a brief example drawn from the
biological literature. We will base this example on data published in a study conducted by Creighton
and Strauss [6], concerning heterochrony in rodents.

A common application of this framework is to classify heterochronic occurrences within a given
phylogenetic hypothesis [7]. In other words, if the evolutionary relationships among a number of
species are already known in advance, we can apply this framework to label the changes in the
growth process that occurred among them. Let’s assume that we have a phylogenetic tree as depicted
in Figure 2a (this phylogenetic tree is only for illustrative purposes and doesn’t represent the true
relationships in the genus). The three rodent species P. melanocarpus, P. maniculatus, and Podomys are
believed to all have a common ancestor, depicted with a black dot at the bottom of the tree. This
common ancestor eventually evolved into two species: P. melanocarpus, and another species (rep-
resented with a white dot ) that is the ancestor of the remaining two. All of the three species exhibit
differences in their morphologies, for instance, in the size of their legs and feet.

Alberch et al.’s framework works exclusively with quantitative traits to define heterochrony. In this
context, a trait is anything that can be measured quantitatively during development. By measuring the
trait during the growth of an individual we obtain a growth curve for the trait. Any trait is suitable as
long as it can be measured quantitatively. Some of the traits usually employed include the total body
length or weight of the individual, or the lengths of individual organs. In their study Creighton and
Strauss applied the framework to several different traits, but here we will be focusing on the foot
length, for illustration.

Figure 2b shows growth curves of the species P. melanocarpus and Podomys, obtained from experi-
mental data. As the reader should expect, it is not trivial to define a growth curve for an entire
ificial Life Volume 15, Number 2 135



Figure 2. A simple classification example based on the work of Creighton and Strauss [6]. (a) Evolutionary relationships
(cladogram) of the genus Cricetinae. (b) Growth curves of the species P. melanocarpus and Podomys. (c) Idealized growth
curves, with the heterochrony change clearly visible. (d) The major heterochronic changes in Alberch et al.’s framework.
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species. Species are made of individuals, and individuals’ growth curves will differ according to their
genetic contents. Also, development does not occur in isolation from the environment, and growth
curves will definitely undergo a strong environmental influence. An important first step, therefore, is to
try to remove all of these influences and create a typical growth curve for the species. In order to do
this, the authors collected and measured the traits for several individuals, and then fitted the data to
a curve, using nonlinear regression. Biological organisms tend to follow well-established growth dy-
namics, and several suitable mathematical models of growth exist. In this case, Creighton and Strauss
fitted the data with a Von Bertalanffy curve, which tends to fit very well with biological data [30].

Heterochrony in this framework is defined by the differences found in the growth curves of the
species, but they are difficult to compare directly. Therefore the framework defines three parameters
that contain the most important information on the development. They are: a, the time when
growth starts; h, the time when growth ends; and K, the average growth rate. In this example, a is
considered to be the time of birth, and is the same in both species; h, because growth tends to
decelerate drastically towards the end, was defined as the time when growth reached 90% of the final
Artificial Life Volume 15, Number 2136
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size. K was computed as the slope of the line connecting the sizes at a and h, as depicted in Figure 2c.
Changes in growth are much more obvious in the reduced versions of these growth curves; we can
easily see that the heterochronic change occurring in these species was only a change in the rate of
growth (the parameter K ). If we assume that this specific change occurred in the Podomys species,
then, according to the framework, this is a case of neoteny (slowdown of growth rate). Besides this
change, the framework defines names for all individual changes in each parameter (Figure 2d). In
practice, however, these changes rarely occur in isolation, so that in fact most heterochronic changes
are described by more than one of the labels in Figure 2d.
2.3 Adapting the Framework
We believe that Alberch et al.’s framework, as described in the previous subsection, is particularly
suitable for artificial embryogeny. First, the framework allows us to compare different systems by using
their growth curves alone, without any need to refer to any underlying genetic or developmental basis.
This allows us to apply it directly to AEs that are not based on natural assumptions, or even to
compare embryogenies that are based on radically different mechanisms. The framework is rather easy
to adopt to the AE context, but nevertheless some adaptations must be made.

Some of the most problematic parts of the framework actually become simplified when applying
it to AE. EAs and AEs are highly abstracted versions of their natural counterparts, so we don’t have
some of the problems that plague our biologist colleagues. One obvious example is measuring
growth data, which is much easier for us, the data being much more readily available. AEs do not
involve dilemmas on what time frame is suitable for measuring development, or on how to deal with
measurement errors [14].

However, it is important to discuss how we should extract the heterochronic parameters, that is,
how can we define the parameters a, h, and K on AEs. As we described in the previous section,
natural embryogenies tend to have well-behaved growth dynamics that can be fitted easily to
mathematical growth models. Based on our previous experience [20, 21], we can state that this is not
the case with AEs. Another problem is that we still don’t understand the growth dynamics of AEs
very well, so it is still early to propose any mathematical growth model to describe them. This doesn’t
mean we cannot apply this framework, because complex dynamics also happens in some natural
embryogenies, for instance, during embryo development [14]. However, the method we have
described in the preceding subsection is not suitable, and we will be using a much simpler method to
extract the parameters. This method, based on linear regression, is robust, and is also widely used to
study heterochrony in natural embryogenies [23].

The major question in applying the framework, however, is one of scope. The example that we
gave uses the framework to characterize heterochrony in species, which usually have no counterpart
in AE. Obviously there are EAs that employ the notion of species, but is much more natural for us
to think in terms of individuals, and how the variation operators change the individuals. This is not a
particular problem for the framework, as it as also been used to characterize variation in individuals
of the same species [23]. The framework can be easily extended to accommodate mutation, just by
treating the two individuals involved as two different species, and conducting a similar process to
that in the previous example. However, it is not trivial to perform the same procedure for the
crossover operator, so we will not consider it at this time. However, we do plan to extend this
analysis to crossover in a later article.

Another difference from our previous example is that we will not be using the heterochronic
labels in the framework, and instead we will be using directly the parameters a, h, and K to describe
the heterochronic changes. This will allow us to rephrase Stanley and Miikkulainen’s concerns in a
quantitative manner, as we will be doing in the next section.

The attentive reader will note that our definition of heterochrony here is rather different from
Stanley and Miikkulainen’s. Their scale of heterochrony is defined exclusively by how easily an embry-
ogeny allows heterochronic changes to occur, and this would roughly correspond to the number of
heterochronic mechanisms it possesses. The definition in Alberch et al.’s framework is broader, in
Artificial Life Volume 15, Number 2 137
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that any mutation that creates a change in development will be considered heterochronic. We are
pursuing the broadest possible definition here precisely because it doesn’t make any assumptions on
the mechanisms used by an embryogeny, and therefore can be used for comparing very different
embryogenies. In the end, from the point of view of Alberch et al.’s framework, it doesn’t really
matter if the cause of change was in fact a change in the order or time of developmental events, as it
will still be a heterochronic change. Heterochrony, from this point of view, is seen as an outcome of
evolution, instead of a mechanism that allows evolutionary change [14, Section II]. This dichotomy
in meaning does not only occur here, and it actually reflects the different meanings of heterochrony
employed in evolutionary and developmental biology [25]. Nevertheless, we believe that our formal-
ism still captures well Stanley and Miikkulainen’s concerns, although in a slightly different manner.
3 The Formalism

3.1 Preliminaries
We will start our discussion with some preliminary definitions and formalizations. In this article, for
all relevant purposes, an embryogeny E can be completely characterized by the items below (the
notation is adapted from [29] and [31]):
� a genotype space VE,

� a phenotype space ṼE,

� a growth function that maps genotypes to phenotypes, fE( g, t ) : VE � Dg ! ṼE,

� a mutation function AE ( g ) : VE ! VE.
VE is the set of all possible genotypes in the embryogeny. For instance, VE could be the set of all
binary vectors of length 10, or the set of all genetic programming trees with a given command set.
Likewise, ṼE is the set of all the possible phenotypes in a given embryogeny, for instance, all of the
possible neural networks with a given depth, or all the possible 2D patterns on a 5 � 5 grid.

We will assume that development for any genotype g occurs in discrete steps, starting at time t =
0 and ending at time t = Ng, where Ng depends on the genotype. Therefore the developmental time
domainDg of a genotype g is a subset of the set of positive natural numbers,DgoNþ

0 = {1, 2, . . . ,Ng}.
We believe that this assumption concerning Dg applies to all AEs, but there are two points that must
be mentioned. First, in some embryogenies, Ng is defined at the embryogeny level, that is, its value is
fixed and the same for all genotypes. Our assumption covers this case as well, so this does not create
any problems. Second, some embryogenies theoretically have a real, continuousDgoRþ

0 . This is the
case when embryogenies use differential equations to model genetic regulation, and these equations
must be integrated over time. In practice, however, these equations are usually integrated numerically
with a fixed step size, so in the end this type of embryogeny still falls under our assumptions.

fE ( g, t ), the growth function, maps genotypes to phenotypes, including intermediate phenotypes
that occur at any developmental time t a Dg. In almost all embryogenies, the starting phenotype of g,
fE( g, 0), is fixed and is the same for all g. The final phenotype of g, fE( g, Ng ), is usually the one that
is employed for evaluating g. Note that we define ṼE as the set of all phenotypes in an embryogeny,
including intermediate and final ones.

The mutation function, AE ( g ), is a nondeterministic function that returns a mutated form of g.
Based on this function, we define the mutation set QE of E as the set of all possible mutation events
occurring in E:

QE ¼ fð g1; g2Þ : g1aVE; g2 : AEð g1Þ ¼ g2g ð1Þ

Formally, this is the set of all pairs in VE that are linked by a single mutation operation.
Artificial Life Volume 15, Number 2138



Figure 3. A sample embryogeny (which we will denote by E1). E1 is a genetic programming embryogeny, where the
genotypes contain instructions for growing patterns in a 2D grid. G and GV are two genotypes in VE1, where GV was
created by mutating G (and therefore the pair (G,GV) belongs to QE1). The genotypes’ N is correlated with the number of
nodes in their trees; in this case, NG = 3 and NGV= 2. On the right, P = fE (G, 3) and PV= fE (GV, 2) are the final phenotypes
of G and GV respectively. The figure also shows all of their intermediate phenotypes.
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In Figure 3, we show how these abstractions can be mapped into settings of a real embryogeny.
Incidentally, this embryogeny is similar to the ones we will be using later, although any other conceiv-
able setting could be used.

3.2 Parametrization Functions
This is mainly a formalization of the explanation of Alberch et al.’s framework given in Section 2.2.
We denote the set of all traits measurable in an embryogeny as TE. Members of this set may include
the total number of cells on a grid, the number of different colors on a grid, or the number of red
cells, if the embryogeny is used to grow patterns, as in Figure 3. Or it might include the number of
layers and the number of synapses, if the embryogeny is used to grow neural networks. Any con-
ceivable trait can be used, as long as it is quantitative and changes during development. Each trait has
associated with it a trait measure function, MT ðpÞ : ṼE ! R, that computes the trait value for a given
phenotype. We will assume, without loss of generality, that the trait values’ domain is R.

Assume that we pick a genotype g from VE, grow it, and apply a trait measure function to each
of its intermediate phenotypes—in other words, that we are computing the composite function
Gg,T(t ) = MT (fE ( g, t )). This resulting function, Gg;T ðtÞ : Dg ! R, the growth curve of trait T on
genotype g, shows how a trait T changes its value during the growth of a given genotype. Figure 4
shows plots of some sample growth curves.
Figure 4. The growth curves of the genotypes in Figure 3: (a) G, (b) GV. The trait T used in this case is the total number of
cells in the grid.
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Growth curves may exhibit rather complex dynamics, and we need a way to extract relevant
information from them. In the context of Alberch et al.’s framework, this is done by defining three
crucial parameters of development, as explained before. In practice, there are several ways this could
be done, and there is no consensus in the biological literature as to which method is the best. A
common and simple approach is to use linear regression, and that is the one we will be using here.
The reader is referred to Klingenberg [14] for explanations of other methods. To extract the
parameters, we define the linear parametrization function, LT ðgÞ : VE � R3. The resulting vector, X =
ha, h, Ki, is computed as follows:
� a is the time t a Dg = {0, 1, . . . , Ng} that a change in trait value can first be observed;
more formally, the first t such that Gg,T(t ) p Gg,T( g, t + 1). If the trait value does not
change at all, then we assume a = Ng.

� h is the time t a Dg = {0, 1, . . . , Ng} that the last change in a trait value can be observed;
more formally, the last t such that Gg,T(t ) p Gg,T( g, t + 1). In a similar way to a, we assume
h = Ng if the trait value does not change at all.

� K, the average growth rate, is the slope of the line connecting the values at time a and h:
K ¼
Gg;T ðhÞ � Gg;T ðaÞ

h� a
ð2Þ

Figure 5 depicts the application of LT to our previous examples.
We will also call the result of applying LT the ontogenetic parameters of genotype g on the trait T. A

pair ( g1, g2) from the mutation set QE has associated a heterochronic change in trait T defined as the
difference in their ontogenetic parameters:

HT ðg1; g2Þ ¼ LT ðg2Þ � LT ðg1Þ ð3Þ

For instance, in the example we have been following until now, the heterochronic change of the
two genotypes is HT(G, GV) = h0, �1, 0.5i. Another possibility would be to define the heterochronic
change as the direct difference of the growth curves GG,T(t ) � GGV,T(t ), leading to a more general
characterization. However, this was not defined in the original framework of Alberch et al., so we will
not persue this definition here.
Figure 5. Computing LT. (a) G (from Figure 4), LT(G) = h0, 3, 2i. (b) GV (from Figure 4), LT(GV) = h0, 2, 2.5i. (c) A more
complex example, GW, with LT (GW) = h2, 5, 1i.
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3.3 Neutral and Heterochronic Sets
Having the framework formalized, we are now able to give more precise definitions of the concepts
discussed in previous sections. We will call a mutation ( g1, g2) neutral on a trait T when it does not
change the trait value of the final phenotype:

MT ðfEðg1;Ng1ÞÞ ¼ MT ðfEðg2;Ng2ÞÞ ð4Þ

This definition of neutrality is different from the notion usually implied in EC. The usual
definition relates to fitness, and not to traits. In an EC context, a mutation can be considered neutral
even if it changes the traits of the phenotype, as long as the fitness of the two genotypes remains the
same. If we assume that the embryogeny only uses the final phenotypes for fitness evaluation, then
our definition of neutrality is included in the EC’s definition, but even so, they are not equivalent. As
we are characterizing embryogenies in a general way (e.g., without referring to any specific fitness
function), we will not use any definitions related to fitness in this article.

A mutation ( g1, g2) is said to be heterochronic on a trait Twhen it changes the growth process in any
way, that is, by creating a change in at least one of the parameters a, h, or K:

HT ðg1; g2Þ p h0; 0; 0i ð5Þ

A point to bear in mind is that our definitions of neutral and heterochronic mutations are always based
on traits computed from the phenotypes. For instance, the same mutation may be neutral for one set of
traits but not another, if the mutation only changes traits in the latter set. In a similar way, the same
mutation may be heterochronic for some traits but not for others. For some readers, this definition may
seem strange and unnecessary. Wouldn’t it be better just to avoid using traits, and define neutrality and
heterochrony directly on the phenotypes? On simple phenotypes, like the 2D pattern examples we have
been using here, it is indeed possible to compare the patterns directly, and in a computationally efficient
way. But there are several classes of phenotypes where this would be too difficult to do or even impossible.
Artificial creatures are a good example, because they usually possess a very complex graph structure with
several different kinds of nodes and connections. These phenotypes cannot be compared directly, al-
though it is possible to devise heuristic procedures that compute an approximate measure of resem-
blance [17]. By using a definition based on traits alone, we do not become limited to simple phenotypes.

Based on these concepts, we may define two subsets of the mutation set QE of an embryogeny:
The neutral mutation set NE,T contains all of the neutral mutations in QE, while the heterochronic mutation
set HE,T contains all of the heterochronic mutations. The relationships among the sets are depicted
graphically in Figure 6. The neutral and heterochronic sets do not have to be distinct; we may further
Figure 6. Relationships among the neutral, heterochronic, and NH sets of an embryogeny. The whole set, that is, the
three boxes considered together, is the mutation set QE. The NH set is part of both the neutral and heterochronic sets.
Each box contains an example of a representative mutation on each set. The solid lines and dashed lines represent
growth curves before and after mutation. For the example, in the neutral set box only the solid line is drawn, as the
growth curve doesn’t change with mutation.
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think of an additional class of mutations that do not change the final phenotype, but still change the
underlying developmental process, as explained in Section 1. These mutations, being both neutral
and heterochronic, lie in a set defined as the intersection between NE,T and HE,T . We will call this set
the neutral and heterochronic (NH) set of a trait T, or NHE,T for short.

A straightforward way to characterize embryogenies based on these sets is to associate
probabilities with each of them. Let’s assume that we pick up a mutation event from an embryogeny
at random; this mutation event could be neutral, heterochronic, or even both, and these occur with
some given probabilities. We will denote the probabilities for a random mutation event to fall into
one of these three categories as P(NE,T ), P(HE,T ), and P(NHE,T ) respectively:

PðNE;T Þ ¼ Pððg1; g2Þ a NE;T ÞÞ; ðg1; g2Þ a QE ð6Þ

PðHE;T Þ ¼ Pððg1; g2Þ a HE;T ÞÞ; ðg1; g2Þ a QE ð7Þ

PðNHE;T Þ ¼ Pððg1; g2Þ a NHE;T ÞÞ; ðg1; g2Þ a QE ð8Þ

Knowing these probabilities allows us to compare different embryogenies on how their behavior
affects mutation, and how much they allow the EA to explore neutral landscapes. We will explore these
concepts more thoroughly when we apply them to two sample embryogenies, later in this article.
3.4 Probability Distributions
The measures shown in the previous subsection allow us to characterize the behavior of the muta-
tion operator at a gross level, but they still cannot tell us anything about how the operator changes
the growth dynamics. We will now turn to this problem.

Assume that, in a given embryogeny, we pick up a mutation event ( g1, g2) at random from the
heterochronic set HE,T . For any given trait T, we can compute for this random mutation event its
heterochronic parameters HT ( g1, g2), which will be in the form of a vector X = haV, hV, K Vi. As we
picked up this mutation event at random, X is in fact a random vector. This vector has an underlying
probability distribution, and we will call this distribution the heterochronic distribution of the trait T in the
embryogeny E, or HE;T for short. This distribution summarizes the behavior of the mutation opera-
tor under a given embryogeny. It basically states how much one single mutation may change the
developmental trajectories between two genotypes.

AEs usually employ standard mutation operators, but their behavior is highly complex because any
changes caused in the genotypes will ultimately be mediated by the embryogeny. Therefore different
embryogenies may have radically different heterochronic distributions even if they share the same
mutation operator. This is the case with the embryogenies that we will be describing later in this article,
which indeed have similar representations and use the same mutation operator. Their differences are
readily evident in Figure 7, where we show density plots of their heterochronic distributions.

We do not need to be limited, in this approach, to the heterochronic set alone; we can extend this
concept to the set NHE,T as well. Let’s assume that this time we pick up a mutation event ( g1, g2)
from NHE,T , and that we compute the vector X following the same procedure as before. Then again
X will be a random vector, and we will call its probability distribution the NH distribution, denoted
NHE;T , of the embryogeny E on trait T.

This approach is similar to the one employed for the heterochronic distribution, but actually these
two distributions characterize very distinct behaviors. The NH distribution characterizes how much a
mutation may change development in a given embryogeny without affecting the final phenotype. This is
different from the P(NHE,T ) measure proposed before, in that P(NHE,T ) specifies only how many NH
mutations may occur, while the NH distribution shows how much these mutations may change the
actual parameters. So they are in fact complementary tools. An example is shown in Figure 8.
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Figure 8. Sample NH distributions (density plots). The density plots were computed in a way similar to the ones displayed
in Figure 7, and represent the same embryogenies. (a) NHCA, number of cells(bandwidth(hV) = 0.2, bandwidth(KV) = 0.4);
(b) NHgrammar-based; number of cells(bandwidth(hV) = 1, bandwidth(KV) = 0.05).

Figure 7. Sample heterochronic distributions (density plots), for the cellular automata and grammar-based embryogenies, of
the number-of-cells trait (these embryogenies are described at length later in this article). Each value on the density axis
corresponds to the probability that a mutation event, picked at random, will have a specified hV and KV. For simplicity,
changes in aVwere ignored. Plot data was obtained from experimental results and interpolated by using a kernel smoothing
technique [32, 24]. (a) HCA, number of cells(bandwidth(hV) = 0.4, bandwidth(KV) = 0.4); (b) Hgrammar-based; number of cells(band-
width(hV) = 2, bandwidth(KV) = 0.1).
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We can go even further and create a probability distribution based on the dynamics of the indi-
viduals themselves. Assume that, in a given embryogeny, we pick up a genotype g at random from the
space of all possible genotypesVE. With this gwe compute its ontogenetic parameters on a given traitT,
so that we end up with a vector LT ( g) = ha, h, Ki. The values of LT ( g) will vary according to the
genotype that was picked, so, as before, LT ( g) will be a random vector. We will call the distribution
of this random vector the ontogenetic distribution of trait T in the embryogeny E, or OT ;E for short.
Ontogenetic distributions are different from the previous distributions in that they characterize indi-
viduals (the kind of growth curves the embryogeny generates) instead of mutations. In Figure 9 we
show the ontogenetic distributions of the two previous embryogenies.
3.5 Characterizing the Distributions
Having defined the distributions, we need a way to compare them in different embryogenies. One
way to do this, which we explored in the previous section, is to compare them visually by looking at
their density plots. In this section we will explain how we can compare them quantitatively by using
standard statistical measures. The previous distributions are all trivariate distributions, and therefore
we can analyze them by using multivariate statistics [12]. For instance, an ontogenetic distribution
can be characterized by a mean vector AðOE;TÞ:

AðOE;TÞ ¼

a

h

K

2
66664

3
77775 ð9Þ
Figure 9. Sample ontogenetic distributions (density plots). The density plots were computed in a similar way to the ones
displayed in Figure 7, and represent the same embryogenies. (a)OCA, number of cells(bandwidth(h) = 0.4, bandwidth(K) = 0.4);
(b) Ogrammar-based; number of cells(bandwidth(h) = 1, bandwidth(K) = 0.1).
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and a variance-covariance matrix SðOE;TÞ:

XðOE;T Þ ¼

varðaÞ covðh;aÞ covðK ;aÞ

covða;hÞ varðhÞ covðh;KÞ

covða;KÞ covðh;KÞ varðKÞ

2
66664

3
77775 ð10Þ

where v represents the mean of the variable v, var(v) represents its variance, and cov(v1, v2) represent
the covariance between v1 and v2 (for simplification, the indexes E and T were dropped from the
right side of the definitions). The other distributions have similar measures, which we denote by
AðHE;TÞ and SðHE;TÞ for the heterochronic distribution, and AðNHE;TÞ and SðNHE;TÞ for the NH
distribution. All of these standard measures are important for characterizing embryogenies. For
instance, the mean vector of an ontogenetic distribution gives us an idea of the typical ontogenetic
parameters in a population, while the variance-covariance matrix of a heterochronic distribution may
indicate how changes in the parameters are correlated when a mutation occurs.

Another important way to compare embryogenies is to measure the variation of their distribu-
tions. This allows us to see how much of the search space is covered by an embryogeny, and how
much it allows the mutation operator to explore the search space. A useful dispersion measure for
multivariate distributions is the generalized variance of a distribution, defined as the determinant of the
variance-covariance matrix. The generalized variance is a single, summary statistic representing the
‘‘scatteredness’’ of a multivariate distribution, and it is akin to the variance in the univariate case. We
will denote the generalized variances of the ontogenetic, heterochronic, and NH distributions by
jS(OE,T )j, jS(HE,T )j, and jS(NHE,T )j respectively.
3.6 Obtaining the Results Experimentally
All of the measures described up until now assume that the distributions OE;T, HE;T, and NHE;T of
an embryogeny are known. In practice, most of the time we cannot compute the real distributions,
because the spaces VE, QE, HE,T , and NHE,T are extremely large, or even infinite. It is possible,
however, to obtain approximate values of the measures by sampling from these spaces. We will
denote the sampled spaces as V̂E, Q̂E, ĤE;T, and cNHE,T . A sample genotype space V̂E can be obtained
by generating n genotypes at random, for instance, by saving the first generation of an EA run. The
mutation set Q̂E can be obtained by generating random mutation events, that is, by generating a
random genotype g, mutating it, saving the pair, and repeating the process several times. The sets
ĤE;T and cNHE,T can be computed by extracting the relevant elements from Q̂E .

The distribution measures can be estimated easily from these sample spaces. For instance, let’s
assume that we have generated n random genotypes. If we compute LT ( g) (on any trait T ) for each
of these genotypes, we will have n vectors with their ontogenetic parameters Xi = hai, hi, Kii, i a {1,
2 . . . , n}. Suppose, furthermore, that we compute the mean vector X and the variance-covariance
matrix S of the set of vectors X. Then the vector

ÂðOE;TÞ ¼ X ð11Þ

and the matrix

X̂ðOE;T Þ ¼
n

n� 1
S ð12Þ
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are unbiased estimators of AðOE;TÞ and
PðOE;TÞ. Due to the central limit theorem, we know that these

estimators approach the values of the real distributions as n increases. Similar measures ÂðHE;TÞ andP̂ðHE;TÞ can be computed for the heterochronic distribution, and ÂðNHE;TÞ and
P̂ðNHE;TÞ for the

NH distribution.
The other measures, presented in Section 3.3, can be computed easily from the sample sets as well:

PðNE;T Þ ¼
jN̂E;T j
jQ̂Ej

ð13Þ

PðHE;T Þ ¼
jĤE;T j
jQ̂Ej

ð14Þ

PðNHE;T Þ ¼
jdNHE;T j
jQ̂Ej

ð15Þ

where |s| stands for the number of elements in the set s.
4 Applying the Framework

In this section we will apply the concepts explained in the previous section to two embryogenies.
These embryogenies—which we will call the cellular automata (CA) and the grammar-based (GB)
embryogenies—are two simple but representative embryogenies for evolving 2D patterns. To keep
the discussion short and relevant, in this section we will only give a brief overview of how the two
embryogenies work. Interested readers can find more details in the Appendix.

Both embryogenies follow the same principles presented in Figure 3. They are both based on
genetic programming, and employ the same mutation operator. The embryogenies are able to grow 6�
6 2D patterns where each cell can have one of four colors: gray, red, white, or blue. They also start
from the same initial phenotype, in this case, an empty 2D pattern with a single gray cell in the middle.
Similar to most other AEs, they allow for cell proliferation and differentiation, but not for apoptosis
(cell death). In order to make the comparison fair, we kept all the settings as similar as possible.

The CA embryogeny works in a similar way to a cellular automaton. The genotype specifies a set
of rules representing how a cell should set its state according to a given configuration. This configu-
ration includes the cell’s own state and the states of the eight surrounding positions. The represen-
tation used is rather flexible, and allows for both specific and general rules. For instance, rules can
have don’t-care symbols, indicating that they can ignore colors in given positions. It is also possible
to specify rules that would be activated if there is at least one cell with a specific color, regardless of
the position where it occurs. Nevertheless, the grid’s boundaries are always respected, so cells at the
boundaries cannot query the cells at the other extreme to set their state. The cell state can be set to
any of the four colors mentioned before; if there isn’t any cell yet in the given position, then a new
cell will be created. However, after a cell is added to a grid, it cannot be removed again, and only its
color can be changed.

The number of development steps in this embryogeny is fixed, and always set to 50. On each
step, the embryogeny scans the grid from left to right and top to bottom, and attempts to apply a
rule from the genotype at each position in the grid. Parts of the grid that do not include at least one
cell in the current position and its eight neighboring positions are ignored. We have imposed this rule
to avoid having cells appearing unconnected to other cells. For illustration purposes, an example of
CA genotype is given in Figure 10.
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Figure 10. (a) An example genotype for the CA embryogeny. Rules are specified by the top Rules element, which
has four children, one for each possible state. Below each outcome there is a Configuration node that specifies
the matching part of the rule. In this example, for simplicity only the red outcome is shown. The nodes below the
Configuration node specify states that the neighboring cells should have for this rule to be matched. The nodes
specify a state for a 3 � 3 patch in the grid, starting from the top left and going to the bottom right in horizontal
order. The state nodes are: R, red; W, white; B, blue; G, gray; ?, don’t care. (b) and (c) show some sample matches for
this rule.
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The GB embryogeny has a very different developmental mechanism, which is similar to Bentley
and Kumar’s explicit embryogeny [3]. The genotype specifies a program, made of step-by-step in-
structions, to grow a tissue. Each cell in the grid has a pointer to different parts of the genetic
programming tree, so each cell will execute different developmental instructions. Commands are of
three types: split, query, and color commands. Split commands specify that a cell must split into two
cells, and that the new cell must be created on a specified coordinate. Coordinates are always spe-
cified relative to the current cell, and they can only refer to their eight immediate neighboring
positions. After a split command is executed, the old and the new cell will execute different devel-
opmental programs, specified by different children of the genetic programming node. Query com-
mands allow a cell to query the state of the surrounding cells, again limited to its eight immediate
neighbors. Finally, color commands allow the cell to change its own color. The cells can also call
one automatic definition tree (ADF), which allows for some modularization of the growth process.
When the cell doesn’t have any more commands to execute, it terminates its development and doesn’t
change state again.

All the cells in the embryogeny execute their developmental instructions concurrently. In each
developmental step the embryogeny executes one instruction for each cell present in the tissue,
unless the cell has already finished its development. Growth finishes when all the cells have executed
all of their commands, so the number of developmental steps is not fixed as in the CA embryogeny,
and depends on the genotype. A sample genotype and its development is shown in Figure 11.
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Figure 11. An example GB genotype and its development. For simplicity, neither the ADF1 tree (not used in this example)
nor the terminal nodes are shown. (a) The genotype. SplitN commands specify that the cell should divide, with the
new cell placed on the specified cardinal position. SetN commands specify the new state of the cell. (b) The initial
phenotype. (c) After SplitN. (d) After (SetBlue, SplitE). (e) After (SetRed, SetWhite).
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4.1 Experimental Results
We generated approximately 12,500 random genotypes and 25,000 random mutation events on each
embryogeny, using the procedure explained in Section 3.6. For the sake of simplicity, in this article we
will only focus on the number-of-cells trait, the same trait used before in Section 3. Readers inter-
ested in applying this framework to more complex embryogenies and traits should refer to our
previous studies on this topic [20, 21].

Although the two embryogenies share lots of similar properties—they are both based on genetic
programming, and both employ the same mutation operator—they have in fact very different
growth dynamics. This can readily be observed in the sample growth curves displayed in Figure 12.
The CA genotypes have a much higher growth rate, and reach maturation much faster than the GB
genotypes. Many of the CA genotypes in our sample set grow tissues to the maximum allowable size
(36 cells) in only three or four time steps. The CA embryogeny is also much more constrained in its
development, with regard to the range of phenotypes it may reach. While the GB embryogeny may
easily generate phenotypes with any number of cells, the CA embryogeny tends to generate tissues
mainly with 1 or 36 cells, and not many outside this range (Figure 13). This is also evident when we
compare the changes created by mutations in Figure 12.
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The difference in dynamics becomes more evident when we consider the ontogenetic distribu-
tions of the embryogenies. We have already shown them before with density plots in Figure 9; here
we will show them in a more explicit form by using a scatterplot matrix (Figure 14). The first ob-
vious difference is in the range of the parameters a, h, and K. Because growth with the CA embry-
ogeny is much faster—both in rate and in time—its distribution has a much smaller h range (0–6)
but a much bigger K range (0–12) than the GB embryogeny (h = 0–80, K = 0, 2). But because the
CA embryogeny is much more restrained in the dynamics it generates, the parameter values are not
very spread apart, and they tend to be lumped together around a few values. This is particularly ob-
vious with the parameter K.

How do these differences translate into quantitative results? Judging from the discussion above,
we can naturally expect the CA embryogeny, being much more constrained than the GB embry-
ogeny, to have a much smaller variance in the ontogenetic distribution. Indeed, this is what happens,
Figure 12. Sample growth curves taken from our mutation experiments. On each graph, the solid line represents the
genotype generated at random, while the broken line represent the mutated genotype. (a) to (c) are from the CA em-
bryogeny; (d) to (f ) from the GB embryogeny.
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Figure 13. Histograms of the number of cells in the final phenotypes, for each embryogeny. Each bar represents the
frequency of final phenotypes with the number of cells specified on the horizontal axis. Note the striking differences
between the distributions.

Figure 14. Ontogenetic distribution of the number of cells trait (scatterplot matrix). (a) CA embryogeny; (b) GB embryogeny.

Artificial Life Volume 15, Number 2150

Heterochrony and Artificial EmbryogenyA. Matos, R. Suzuki, and T. Arita



Figure 14. (continued)
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with the GB embryogeny having a generalized variance 450 times greater than the CA embryogeny
(CA = 1.82 � 10-2, GB = 8.91 � 10+0, Table 1). The remaining statistics are shown in Tables 1
and 2.

Results on the mutations and the heterochronic distribution are similar to those for the onto-
genetic distribution (Figure 15, scatterplot matrix; Figure 7, density plot ). The CA embryogeny is
again more constrained than the GB embryogeny, although this time the differences are not as large
as in the ontogenetic distribution. When compared, the ranges of the distribution are seen to have
similar proportions (with the CA having smaller aV and hV ranges, and a much bigger KV range), but
once again the CA genotypes tend to be lumped together on a few different values. The generalized
variance of the heterochronic distribution, therefore, as expected, is bigger in the GB embryogeny—
around 1.43 times bigger (CA = 7.6 � 10-2, GB = 1.09 � 10-1 ).

Neutral probabilities and heterochronic probabilities tend to be very similar between the
embryogenies, so we will not discuss them further. The NH probabilities, however, are rather dif-
ferent. Out of the 25,000 mutation events, approximately 0.01% of the mutations were at the same
time neutral and heterochronic in the CA embryogeny, and almost 0.07% in the GB embryogeny.
This is a rather surprising result, because it shows that both embryogenies allow for mutations that
are at the same time neutral and heterochronic, although only with a small probability. The shape of
the NH distribution gives a better indication of how much the embryogenies allow the heterochronic
parameters to change without affecting the final phenotype (Figure 16). The NH distributions overall
have a smaller range of values than the parent heterochronic distribution—for instance, in the GB
embryogeny, the variable hV ranges over [�35, 35] in the heterochronic distribution, compared to
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Table 1. Experimental results (distributions).

Cellular automata Grammar-based

Ontogenetic distribution

ÂðOE,TÞ

6:25� 10-3

2:07� 10þ0

7:99� 10þ0

2
66664

3
77775

4:15� 10-1

1:90� 10þ1

1:01� 10þ0

2
66664

3
77775

P̂
ðOE,TÞ

6:35� 10-3 1:32� 10-2 1:16� 10-2

1:32� 10-2 1:98� 10þ0 7:34� 10þ0

1:16� 10-2 7:34� 10þ0 2:88� 10þ1

2
66664

3
77775

6:66� 10-1 4:23� 10-1 �2:05� 10-2

4:23� 10-1 9:63� 10þ1 7:28� 10-1

�2:05� 10-2 �7:28� 10-1 1:45� 10-1

2
66664

3
77775

j
P̂
ðOE,TÞj 1.82 � 10-2 8.91 � 10+0

Heterochronic distribution

ÂðHE,TÞ

0:00� 10þ0

2:49� 10-3

1:00� 10-2

2
66664

3
77775

3:37� 10-5

4:84� 10-2

1:02� 10-3

2
66664

3
77775

P̂
ðHE,TÞ

1:02� 10-2 2:61� 10-2 3:75� 10-2

2:61� 10-2 2:86� 10þ0 1:04� 10þ1

3:75� 10-2 1:04� 10þ1 4:08� 10þ1

2
66664

3
77775

1:10� 10-1 2:36� 10-1 9:24� 10-3

2:36� 10-1 2:97� 10þ1 �2:88� 10-1

9:24� 10-3 �2:88� 10-1 3:79� 10-2

2
66664

3
77775

j
P̂
ðHE,TÞj 7.6 � 10-2 1.09 � 10-1

Neutral distribution

ÂðNHE,TÞ

0:00� 10þ0

6:02� 10-4

�2:00� 10-3

2
66664

3
77775

2:97� 10-4

8:85� 10-3

�4:40� 10-4

2
66664

3
77775

P̂
ðNHE,TÞ

3:37� 10-3 3:13� 10-3 5:62� 10-4

3:13� 10-3 1:22� 10-2 �1:78� 10-2

5:62� 10-4 �1:78� 10-2 3:84� 10-2

2
66664

3
77775

1:25� 10-3 2:94� 10-4 5:87� 10-5

2:94� 10-4 1:63� 10-1 �7:56� 10-3

5:87� 10-5 �7:56� 10-3 4:33� 10-4

2
66664

3
77775

j
P̂
ðNHE,TÞj 6.27 � 10-8 1.60 � 10-8
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Table 2. Experimental results (probability measures).

Cellular automata Grammar-based

P(HE,T) 3.3 � 10-1 3.6 � 10-1

P(NE,T) 6.7 � 10-1 6.3 � 10-1

P(NHE,T) 1.8 � 10-3 6.98 � 10-3
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[�15, 10] in the NH distribution. The NH distribution also exhibits a stronger negative correlation
between the parameters hV and K V. This is expected, because changes in one parameter must com-
pensate changes in the other, in order for the mutation to remain neutral. For instance, if h increases,
K must decrease, or otherwise the trait value will be larger in the mutated genotype. Summarizing,
the GB embryogeny has a greater probability of generating NH mutations, but when they occur, the
resulting changes are smaller than with the CA embryogeny. This is reflected in the generalized
variance of the two embryogenies: The CA embryogeny has a generalized variance almost four times
greater (CA = 6.27 � 10-8, GB = 1.60 � 10-8 ).

How are the embryogenies able to generate NH mutations? As we will see, the main mechanism
behind NH mutations, in both embryogenies, is abstraction. Figures 17 and 18 show two examples of
Figure 15. Heterochronic distribution of the number-of-cells trait (scatterplot matrix). (a) CA embryogeny; (b) GB embryogeny.
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Figure 15. (continued )
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NH mutations taken from our experiments, one for each embryogeny. In the CA example (Figure 17),
the mutation causes the growth to stall in the right side of the grid. Eventually, at time t = 4, a rule is
activated on both g1 and g2 that makes them reach the same state. This rule was unchanged by
mutation, so it is the same for both genotypes. However, the configuration part of the rule is general
enough, and matches the configurations on both genotypes at time t = 3. After this rule is activated,
both genotypes reach the same final state, and further development will be similar from then on.

In the GB embryogeny example (Figure 18), the difference occurs at the top right of the grid, and
starts at t = 11. It is not as pronounced as in the CA embryogeny, but the phenotypic trajectories
stay apart for a much longer period. The mechanism responsible for the NH mutation is similar to
that in the CA embryogeny. In this case, what is happening is that the latest developmental stages in
both genotypes are directed by an ADF call. The ADF tree itself was not changed by mutation, but
some of the steps before its call were altered. When the ADF tree is called, in both genotypes it
rewrites most of the changes caused by the early steps. The end result is that even when these early
steps are changed, the ADF call will make development converge to the same state.

Summarizing, the embryogenies show very different behavior, although they are based on very
similar assumptions. Overall, the GB embryogeny is much more flexible than the CA embryogeny,
not only in the range of phenotypes it may generate, but also in the dynamics of the developmental
process and in the behavior of the mutation operator. This became readily evident when we applied
the framework described in this article. Both embryogenies allowed to some extent for mutations
that changed the growth process without changing the final phenotype, although only with a very
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small probability. This was shown to be related to the ability of the embryogenies to have abstract
rules and procedures.
5 Conclusion

In this article we have proposed a new approach for analyzing and comparing AEs, grounded on
the concept of heterochrony. We examined different meanings of heterochrony in biology and artifi-
cial embryogeny, and argued that the most encompassing definition—the one used in evolutionary
biology—is the most suitable for this field. We adapted the most popular biological framework
for studying heterochrony—Alberch et al.’s heterochrony framework—to our artificial systems and
proposed several ways to measure heterochrony in them. These measures are general enough to fit all
AEs, and can be calculated empirically. They allow us to compare different embryogenies in a rigorous
manner. To illustrate their use, we have computed the measures for two different embryogenies—an
embryogeny based on cellular automata (the CA embryogeny), and another based on simple growth
commands (the GB embryogeny). The CA embryogeny turned out to be much more restrained in its
development than the GB one, and that was reflected in our quantitative measures.

One particular interesting result concerning our embryogenies is that both of them allow to a
certain extent—albeit a small one—mutations that change the growth process without changing the
final phenotype. In both embryogenies this is achieved through their abstraction mechanisms: rules
Figure 16. NH distribution of the number-of-cells trait (scatterplot matrix). (a) CA embryogeny; (b) GB embryogeny.
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Figure 16. (continued )

Figure 17. An example of a neutral and heterochronic mutation in the CA embryogeny. g1 refers to the original genotype,
and g2 to the mutated one. t refers to the developmental time. Time flows from top to bottom, left to right.
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Figure 18. An example of neutral and heterochronic mutation in the GB embryogeny. The labels are similar to Figure 17.
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(in the CA case), or procedures (in the GB case) that are unchanged during mutation and are general
enough to bring development back to the same phenotype. This suggests two things: first, that most
AEs may in fact be able to generate neutral and heterochronic mutations, that is, that this is a general
property of development; second, that the extent to which this is allowed (or, using the terminology
in this article, the generalized variance of the NH distribution) should be positively related to their
abstraction abilities. In order to verify this, however, we will need to conduct similar analyses on a
wider range of embryogenies.

We hope that the contributions in this article will allow the field of AE to achieve a more rigorous
state. For this to be of any use, however, it is important that other researchers in the community
readily adopt these methods, and apply them to their own embryogenies. Only with a wider range of
experiments will we be able to start drawing more general conclusions. This will hopefully allow us to
move over from results that only apply to specific implementations to a real, generalized understand-
ing of how AEs work.
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Appendix: The Embryogenies
In this appendix we give additional details on the embryogenies described in Section 4. This should
allow interested researchers to replicate the results published in this article, if deemed necessary.

We have conducted our experiments with the Evolutionary Computation in Java package (ECJ)
[19], a free EA program. For designing the embryogenies, we have used ECJ’s built-in support for
strongly typed genetic programming, but all other remaining settings were left to their default values.
In ECJ, strongly typed genetic programming is implemented by defining a set of types, which are
basically labels attached to nodes in the genetic programming tree. The types are used to indicate the
return type of a given node, and also to specify the type used by its children; this information is used
by the tree creation and mutation operators, to ensure that only valid trees are generated.

The types we have used in our embryogenies are as follows: boolean specifies a Boolean value,
state specifies a state to be checked in the neighborhood (CA embryogeny), and command specifies
a cell command to be executed (GB embryogeny). The list of all commands used in the CA embry-
ogeny is shown in Table 3, and the one for the GB embryogeny in Table 4.

The CA genotypes have a rather rigid structure. The top node is always a Rules element with four
children. Each child represents one of the four possible outcomes in order: red, white, blue, or gray
(these nodes are not included in the table). Below each of the four outcomes are test subtrees, with a
Table 3. CA embryogeny commands.

Command Return type Children Children’s type Description

Configuration boolean 9 state A specific configuration.

R state 0 — Red state.

W state 0 — White state.

B state 0 — Blue state.

G state 0 — Gray state.

? state 0 — Don’t care.

And boolean 2 boolean Logical AND.

Or boolean 2 boolean Logical OR.

Not boolean 1 boolean Logical NOT.

AnyX? boolean 0 — True if there is at least one of the specified

colors in the neighborhood. X can have one

of the following values: {B,R,W,G}.
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Table 4 . GB embryogeny commands.

Command Return type Children Children’s type Description

SplitX command 2 command Creates a new cell on the specified cardinal

position. X can have one of the following

values: {N,NE,E,SE,S,SW,W,NW}. Each cell will

execute a different branch of the tree after

the split.

If command 3 boolean,command, command Checks a condition. Executes the first code

branch if the condition is true. Otherwise

executes the second branch.

CX boolean 0 — Checks the state of a neighboring cell. C can

have one of the following values: {R, B, W, G,

Boundary}. X is as in the split command

above.

X command 0 — Terminates development.

Call command 0 — Calls the ADF tree. (Will allow for at most

three levels of recursion.)

SetX command 1 command Sets the cell’s color. X can have one of the

following values: {R, B, W, G}.

And boolean 2 boolean Logical AND.

Or boolean 2 boolean Logical OR.

Not boolean 1 boolean Logical NOT.
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return type of boolean. During each iteration step, the embryogeny tries to match the configuration
on each test subtree in order, and the first one that matches it is set to that specific outcome.

In contrast, the GB embryogeny has a looser structure. The top node of the tree is always of type
command. This corresponds to the instruction that is going to be executed by the single cell in the
grid when development starts. Development follows by executing the instructions in the tree, as ex-
plained before in Section 4. We believe that the descriptions in Table 4 should be self-explanatory.

The cells during development execute their instructions concurrently, and this requires some ad-
ditional explanations. To simulate concurrency, we employ a scheme similar to the one used in the
cellular encoding embryogeny [8]. During growth, the embryogeny maintains a list of all the active
cells. On each iteration, the embryogeny iterates over all the cells in this list, and executes one single
instruction (the one that the cell is currently pointing to) for each cell. Cells that finish their devel-
opment are removed from this list, and new cells that are created (by split commands) are added to
it. Development finishes when this list becomes empty. The cells are always iterated following the
same order, with older cells being executed first, and new cells being added to the end of the list.
Artificial Life Volume 15, Number 2160


