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Abstract This article reports on the current state of our koyama@shiro.gs.human.
efforts to shed light on the origin and evolution of linguistic
diversity using synthetic modeling and artificial life
techniques. We construct a simple abstract model of a
communication system that has been designed with regard to
referential signaling in nonhuman animals. We analyze the
evolutionary dynamics of vocabulary sharing based on these Keywords
experiments. The results show that mutation rates, evolution, linguistic diversity, com-
population size, and resource restrictions define the classes of ~ munication, genetic algorithms
vocabulary sharing. We also see a dynamic equilibrium,
where two states, a state with one dominant shared word and
a state with several dominant shared words, take turns
appearing. We incorporate the idea of the abstract model into
a more concrete situation and present an agent-based model
to verify the results of the abstract model and to examine the
possibility of using linguistic diversity in the field of
distributed AI and robotics. It has been shown that the
evolution of linguistic diversity in vocabulary sharing will
support cooperative behavior in a population of agents.
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I Introduction

Chomsky’s famous claim that from a Martian’s-eye-view all humans speak a single
language is surely plausible. However, in our view it is true that we have thousands of
mutually unintelligible languages. Terrestrial scientists have no conclusive answer as
to why this linguistic diversity exists [12]. While the quest for the origin of diversity in
languages is a challenging theme, diversity in species is also one of the most important
themes in biology. Charles Darwin stressed the importance of language difference and
linked the evolution of languages to biology [5].

The study of communication/language from an alife perspective has received a great
deal of attention lately [14]. Some of the first experiments were conducted by MacLen-
nan [10] and Werner and Dyer [16]. MacLennan considered a population of simple
organisms, represented genetically by truth tables, and created a shared environment
through which the organisms could pass initially arbitrary signals. It was observed
that effective communication evolved in the population based on their scoring func-
tion. The simulation experiment by Werner and Dyer successfully demonstrated the
evolution of a system for signaling between members of opposite sexes to coordinate
mating behavior. In their model, explicit scoring functions were not used; instead,
effective communication allowed males to find females more rapidly, thus increasing
the reproductive rate of the individuals that communicated effectively.

Concerning the evolution of grammar, Batali [4] constructed a model for the evolu-
tion of grammar and performed the simulations of evolution on populations of simple
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recurrent networks in which the selection criterion was the ability of the networks to
recognize strings generated by grammars. The results suggest a new explanation for
the “critical period” effects observed in language acquisition. Hashimoto and Tkegami
[6] studied the evolution of grammar systems in networks using an agent model. Here,
the individual grammar was expressed by a symbolic generative grammar, and each
agent was ranked explicitly by three scores in each round: speaking, recognizing, and
being recognized. It was observed that two processes, a module-type evolution and
a loop-forming evolution, were significant. The number of recognized words rapidly
increased when a module emerged in a grammar system, and many words could be
derived recursively by a grammar processing a loop structure.

There have not been many studies concentrating on the issue of the linguistic di-
versity from an evolutionary perspective. Werner and Dyer [16] showed that “dialects”
that are bilingual G.e., correctly interpreting several signaling protocols) have an in-
creased chance of dominating over time. Also, Hashimoto and Ikegami [0] studied
the diversity of spoken words produced by symbolic grammar systems in terms of the
computational ability of automata, where their computational ability was the ratio of
recognizable words to the total number of possible words.

The most straightforward explanation for the origin of linguistic diversity is based
on spatial distribution of individuals [3]. The following two studies have supported this
view. Arita and Taylor [2] constructed a simple communication model in which a pop-
ulation of artificial organisms with neural networks inhabited a lattice plane and each
organism communicated information with neighbors by uttering words. The results of
the experiments showed that the accumulation of mutation, propagation delay, and
the effects of inheritance produce very complex dynamics, while learning by neural
networks and selection of parents have large effects on language unification. Through
their experiments on naming games, Steels and McIntyre [15] showed that agent in-
teraction, which depends on spatial distribution, determines the degree of diversity in
vocabulary. Their research takes the view that linguistic information evolves and is
transmitted culturally, not genetically.

There have been other explanations of the origin of linguistic diversity. Hutchins and
Hazlehurst [9] presented simulations employing communities of simple agents to model
how a lexicon could emerge from interactions between agents in a simple artificial
world. Their models were not based on the evolutionary perspective, but on the
connectionist approach. They occasionally observed that the random initial starting
points of the networks in a community were incompatible with each other, and this led
to divergence in the verbal representations of these individuals.

Recently, Werner and Todd [17] have extended a previous model [16] to focus on
exploring the idea that the origin of diversity in communication signals is due to sexual
selection. In their new model, communication signals were used to attract females as
mates, and sexual selection drove the evolution of male songs and female song prefer-
ences. Each male had genes that directly encoded the notes of his songs, and females’
genes encoded a transition matrix used to rate transitions from one note to another in
male songs. Each entry in the transition matrix represented the female’s expectation that
one pitch would follow another in a song. Werner and Todd investigated three methods
for scoring the male songs, one of which is based on the idea in ethology that females
exposed to the same song repeatedly will become bored and respond to that song less.
They have shown that sexual selection could lead to maintenance of signal diversity,
which was at its maximum in an initial population with many different male songs.

The first goal of our article is to investigate the origin and evolution of linguistic
diversity from an evolutionary perspective. To do this we construct minimal models
that are designed with regard to referential signaling in nonhuman animals and analyze
their evolutionary dynamics based on the synthetic experiments. The second goal is to
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examine the possibility of utilizing linguistic diversity in the fields of distributed AI and
robotics, based on the results of the above experiments. We believe that a very simple
communication system can continue to generate linguistic diversity in an environment
without spatial distribution. This supports the hypothesis that in an environment with
limited amounts of resources that contains individuals with poor linguistic facilities,
linguistic unification is not necessarily adaptive.

In Section 2 we discuss the design of the abstract model based on the communication
systems found among nonhuman animals and show the results of the experiments.
We then construct an agent-based model (Section 3) by introducing the evolutionary
mechanism of the abstract model into a concrete situation to verify the results obtained
in Section 2. In Section 3 we also examine the possibility of utilizing the mechanism
in engineering fields. In Section 4 we discuss several issues concerning the origin and
evolution of linguistic diversity and its application, based on the results described in
the previous sections. Section 5 is a summary of the article.

2 Abstract Model

2.1 Background

Seyfarth, Cheney, and Marler’s pioneering work [13] on the vervet monkey’s alarm call
system revealed that they produce acoustically distinct and discrete alarm call types, and
in response to hearing such calls, individuals react with appropriate escape behaviors.
It is a remarkable point that vervet monkeys are born with the ability to respond
appropriately to general predator categories (e.g., things up in the air, slithering things
on the ground), where learning plays virtually no role in modifying signal structure,
either during early development or later in life [8]. A referential system is functionally
significant because when an individual hears an alarm call, an appropriate antipredator
response can be initiated without having to see what is going on. In fact, the vervet
monkey’s alarm call system is a beautiful illustration of how selection pressures might
have favored signal diversification [8]. An all-purpose alarm call would not work for
vervet monkeys, because it would not provide sufficient information about the type of
predator or escape response that would be most appropriate.

Since the work on the vervet monkey’s alarm call system, several other studies have
focused on the problem of referential signaling in nonhuman animals, including other
simian primates (e.g., rhesus macaques), prosimians (e.g., ringtailed lemurs), and a
few other species (e.g., domestic chickens). It has become clear that these signals
are used in various contexts such as predator encounters, discovering food, and social
relationships. For example, when a food call is given, listeners obtain information
about the availability of alternative food sources, which can serve to guide their foraging
decisions. Characteristics of these communication systems, especially in primates, are
as follows:

e The communication systems are composed of speakers and listeners. Those who
encounter the predators (or food) produce acoustically distinct and discrete alarm
(or food) calls, and in response to hearing such calls, listeners behave
appropriately.

e The signals are referential in the sense that they are reliably associated with objects
and events in the environment.

e They do not react instinctively as a direct expression of their internal states. They
send the signals with some primitive type of intention on the assumption of the
existence of listeners.
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e They are born with the ability to respond appropriately to general categories.
Learning plays a relatively small role in modifying signal structure.

e These types of communication systems illustrate how natural selection might have
driven signal diversification.

The first steps toward human languages are still shrouded in mystery despite the stud-
ies and controversies in many fields, but the above-described communication systems
might be strong candidates for the immediate steps, in other words, the “protolan-
guages.” This article aims at exploring the origin and evolution of linguistic diversity
using two different types of models (in Section 2 and Section 3) with a communication
system that is based on that observed in nonhuman animals.

2.2 Definition

The communication system in our models is composed of N, individuals. Each
has a simple vocabulary system that is represented by a table that relates words and
meanings as shown in Figure 1. Identical words can appear more than one time, which
corresponds to homonyms (word 12 in this figure), while each meaning appears one
time in this table. These tables describe innate information and are transmitted to
offspring by genetic operators.

First an initial population of N, individuals with randomly generated vocabulary
tables is generated. A signaler and N listeners are randomly selected at the beginning
of each “conversation.” In a conversation, a word is uttered by the signaler, and each
listener is one of the following three types, based on the interpretation of the word:

a listener that has the word in its vocabulary table, and its meaning is equal to the
meaning in the signaler’s vocabulary table (“right listener”);

a listener that has the word in its vocabulary table, but its meaning is not equal to
the meaning in the signaler’s vocabulary table (“misunderstanding listener”);

a listener that does not have the word in its vocabulary table (“ignorant listener”).

In the case that the received word is a homonym in the listener’s vocabulary table, one
meaning is randomly selected as its interpretation. Figure 2 shows an example where
a signaler sends the word 5 which expresses the meaning 2.

Here, we divide the “right listeners” into “successful listeners” and “unsuccessful
listeners” because it would be necessary to take these constraints into consideration in
many situations investigated. For example, in the case of the food call, some of the
listeners that wish to obtain the food might nonetheless fail to do so, because of feeding
competition. In the case of the alarm call, some of the listeners that intend to respond
with behaviorally appropriate escape responses might nonetheless fail in their effort to
escape from the predator.

In every conversation each individual belongs to one of the following categories: sig-
naler, successful listeners, unsuccessful listeners, misunderstanding listeners, ignorant
listeners, or nonparticipants, as shown in Figure 2, and they are rewarded with Rend,

Meaning | 0 1 2 214
‘ward 5712 ] 34| 6012

Figure I. An example of a vocabulary table.
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Figure 2. An example of conversation.

Meaning| O 1| 2] 3| 4 Meaning| O | 1| 2| 3| 4

Word | 87|12 | 34| 60| 12 Word | 87| 12| 34| 66| 94
_-.

Meaning] 0| 1] 2| 3| 4 Meaning| O | 1] 2| 31 4

Word| a| 12| 35| 66| 94 Word| 4| 12| 35| 60) 12

Figure 3. An example of crossover on a vocabulary table.

Rinare, Runshares Rwrong, Rignorant, OF Rour, respectively. There can be positive, negative,
and zero values. These rewards are genetic fitness scores for signaling.

After this process of conversation is repeated N.on, times, the information in the
vocabulary tables is passed on to offspring by genetic operations. The next generation,
which is also composed of N, individuals, is created by roulette selection based on the
scores, where mated vocabulary tables cross over at a randomly selected point between
columns (Figure 3). Then, mutation is performed on each word in the vocabulary tables
with some probability P, where the word is changed to a randomly selected word.

2.3 Experiments

We have conducted simulations following the procedure described above. The abstract
model is general in the sense that it can represent many situations depending on the
values of the rewards. In this article, we examine the communication system in the
context that an individual finds a food source and utters the word for its meaning (the
type of the food). We leave until later the case of alarm calls, though we see no reason
why it should be different.

The number of the population (N,op) wWas 64. If the number of the right listeners
was not more than 4 in a conversation, all of the right listeners were considered to be
successful and to obtain Ryy,... Otherwise, 4 successful listeners were randomly selected
from the right listeners, and the remaining right listeners were considered unsuccessful
because of competition. The individual that found the food source and successful
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listeners shared the food source equally, that is, Rend = Rshare = Riood/ (72 + 1), where
the amount of the food source was Ri,,q and the number of the successful listeners
was 1. Rioq Was set to be an arbitrary constant, 20. The reward for the individuals that
interpreted the uttered word correctly but could not obtain the food source (Rnshare),
was —3. The reward for the individuals that misunderstood the uttered word (Ryrong)
was —2. The reward for the individuals that did not have the uttered word in their
vocabulary tables (Rgnoran), and the reward for the individuals that did not join the
conversation (Ryy,), were —1 and 0, respectively. The number of individuals that joined
the conversation was always 20 (N + 1). Each generation had 500 conversations
(Neony). Each word was expressed by an integer 7 (0 < I < 99). In this article, we
investigate the case that there is only one type of food source (the size of the vocabulary
table is 1) for convenience of analysis.

Plate 1a—d shows the evolutionary dynamics in vocabulary sharing where mutation
rates (Ppye) are 0.01, 0.015, 0.04, and 0.1, respectively. The horizontal axes represent
the generations. The vertical axes represent the distribution of words corresponding
to meaning, and each same gray level means that an identical word is attached to the
meaning.

Overall, as these figures show, the lower the mutation rate becomes, the more
individuals there will be that have the same word for the meaning. The states of
how the meaning was typically shared among the population were classified into the
following four classes (the threshold values are approximate numbers).

Class A (P is less than 0.015, Plate 1a):
A dominant word emerges, and the state becomes stable.
Class B (Pyy is nearly 0.015, Plate 1b):

The state that three to six words coexist and the state that one word spreads
appear in turn.

Class C (P is more than 0.015 and less than 0.07, Plate 1c¢):

Several words coexist. New words appear and then disappear repeatedly.

Class D (P is more than 0.07, Plate 1d)):

The state changes in a chaotic manner.

In Class B, the latter state was broken by an individual that had a new word generated
by mutation. The reason this occurred is considered to be that the benefit to the mutant
of monopolizing the food sources it found was larger than the benefit of sharing the
sources found by the others by receiving the information of their existence at that
moment. It is shown here that the unification of vocabulary tables in the population is
not necessarily adaptive, which is a remarkable point.

Plate 2 shows the relation between the state of vocabulary sharing and the scores of
agents when Py, = 0.015. The upper part of this figure shows the state of vocabulary
sharing, the middle part shows the average score of individuals and the Shannon’s
entropy of the words for the meaning, and the lower part shows the number of the
words shared by more than three agents. The entropy was obtained by calculating

H = Ep(1)In p(1),
where a word for the meaning is word I with probability p(7).

It is easy to make a distinction between the occasion where several words coexist
and the occasion where there is only one dominant word in the middle graph. It is
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regarded as the cause of reduced scores in the state with a dominant word that a large
number of individuals with the identical vocabulary obtained the reward (cost) Rynshare
frequently in this state. The entropy dropped initially and moved according to the state
of vocabulary sharing (a state of one dominant word or a state with several dominant
words) after some kind of order emerged.

We have conducted another series of experiments concerning the effects of popula-
tion size and the amount of the source (Ripoq). Some of the results are shown in Plate 3
and Plate 4. It can be found from these figures that an increase (decrease) in popula-
tion size, or in the amount of food source, has similar effects to an increase (decrease)
in mutation rate. One of the things that we notice is that there is a difference be-
tween those occasions where many words coexist because of increased mutation rate,
and those occasions where many words coexist because of increased population size.
In the former, the individuals with a new word appear repeatedly and the states change.
In contrast, in the latter, the state has a tendency to be stable without allowing the in-
dividuals with a new word to appear. The experiments on the effects of varying the
amount of the food source have shown that the greater the amount of the food source,
the more individuals there will be that have the same word for the meaning.

It has been assumed in all of the experiments to this point that any individual that
has found the food source always signals. Here, we make a minor modification in the
settings to investigate the motivation of signalers. We interpret that a specified word
(the word 0 in this series of experiments) means being silent. If an individual that
has found a food source has the word 0 corresponding to the food source, then it
will not signal at all. Therefore, it could monopolize the food source, which will be a
benefit, but at the same time it cannot obtain the information about the existence of the
other food sources when the other individuals find them, which will be a disadvantage.
The experiments have been conducted under the same conditions (P, = 0.015) but
with this modification. The results are shown in Plate 5a. A silent individual, that
is, a mutant with this newly defined word 0, was generated by mutation at about the
180th generation, and then the silent group spread through the population rapidly.
Communication died out in all experiments when silent individuals were allowed. The
reason for this is thought to be that the silent individuals pay no penalty when they
cannot obtain food sources, and at the same time, they have a slimmer chance of being
sent signals from the individuals with a nonzero word, as the number of the silent
individuals increases.

In the above-described experiment, when a silent individual found a food source,
it monopolized all of that food source if it could. Next we modified this setting so
that it could obtain half of the food source at most. The results are shown in Plate 5b.
In this case, the silent group does not become dominant. The reason is believed
to be that the silent individuals made less-efficient resource distribution than nonsilent
individuals in the sense that occasionally the silent individuals left food sources without
transferring information of the source. The issues concerning the silent individuals are
worth examining, and some of them will be discussed in Section 4.

3 Agent-Based Model

3.1 Definition

We have introduced the evolutionary mechanism of the abstract model generating the
linguistic diversity into a concrete situation and have constructed an agent-based model.
The first objective of its design and experiments is to verify the results of the experiments
concerning the abstract model, which depend on the explicit reward setting, by defining
a concrete task done by agents. The second objective is to explore the possibility of
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applying the evolutionary dynamics of the linguistic diversity to issues in various fields,
such as robotics and distributed Al

Foraging behavior in a population of simple mobile agents (robots) has been taken
up as the theme of the agent-based model. The task described in this section could
be interpreted in many ways, as energy supply in robotics, or garbage collection in
distributed AI, for example, because we have assumed a situation in which mobile
agents move and gather food sources using a simple communication system.

The field has N, mobile agents and MNqoq food sources. Each agent has a vocabulary
table and has an energy value as an internal state, which corresponds to a genetic fitness,
though it could be negative. If the energy value of an agent is less than gy, then
the agent is “hungry.” When the energy value is Eyy, the agent is “full,” and it can no
longer eat the food source. Each agent consumes one unit of energy every time step.
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Figure 4. Transitions among behavioral modes.

The behavioral state of each agent is one of the three modes: search mode, react
mode, or approach mode (Figure 4). At the beginning of every generation, agents and
the food sources are located at randomly selected positions in the field. All agents
are in search mode, and the energy values are Eyy. Each agent in search mode se-
lects randomly and engages in one of the following five behaviors: halting, moving
forward, moving backward, turning right, or turning left. The distance of moving for-
ward/backward, D, is randomly determined every time (0 < D < Ly, in pixels).
The speed of moving in any mode is constant (Vygen pixel/step). The angle of turning
right/left, X, is randomly determined every time (0 < X < Auym, in degrees). It takes 1
time step to turn right/left. Agents in search mode detect food sources within a distance
of Ljereer. When a hungry agent in search mode finds a food source, it utters the word for
it, and its state changes into approach mode. This signaling process takes 1 time step.

An agent in approach mode approaches the food source. Each food source also
has an energy level, which is Epoq initially. When an agent reaches a food source, it
ingests the food until it becomes full or the energy of the food source becomes zero. If
the energy of a food source becomes zero, it is removed from the field. Food sources
are generated only when a new generation of agents is created. Other agents cannot
get the information about the exhaustion of the food source. Therefore, when the
food sources are removed, the agents that are in react mode, in other words, devoting
themselves to going for the location where the word was uttered, would generate loss
of time and energy for themselves. This cost, which is represented implicitly and nat-
urally in this agent-based model, is equivalent to the value expressed by R pgpare in the
abstract model.

Agents that are in search mode and are within a distance of Iy, can hear an uttered
word. If an agent is hungry and is a “right listener,” its state changes into react mode.
Each agent in react mode approaches the location where the word was uttered. When
an agent in react mode reaches the location, if it detects a food source, its state changes
into approach mode; otherwise its state changes into search mode.

In this manner, the agents repeat searching for food, approaching food or the places
the words were uttered, uttering words, and hearing the words, until Ny, time steps
pass from the beginning, or all food sources are consumed. Next, the information on
vocabulary tables is passed on to offspring by genetic operations in a manner similar to
that in the abstract model. The next generation, also composed of N, agents, is created
by roulette selection based on the agents’ energy values after scaling, where mated
vocabulary tables cross over at a randomly selected point between columns. Then,
mutation is performed on each word in the vocabulary tables with some probability
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P, where the word is changed to a randomly selected word. In this manner, these
processes are repeated again and again for populations in subsequent generations.

3.2 Experiments

We have conducted some preliminary experiments with the following parameters:
Npop = 20; Neood = 20; ]Vstep = 10,000 Linove = 100; Lyetect = 100; Ipear = 200; Vagem =1
Awurn = 1005 Fhungry = 3,000; B = 5,000; Frooa = 4,500; Field size was 1,000 by 1,000.
Also, only one meaning was set up in this series of experiments. In other words, there
was one type of food in the field. Evolution was observed for 300 generations.

Plate 6 shows the evolutionary dynamics in vocabulary sharing for 300 generations,
where Py, was 0.01. We have observed similar evolutionary dynamics to those in the
abstract model, except that the effect of the mutation rate is slightly different. The
threshold value is approximately 0.01 in this agent-based model, which divides Class A
and Class C, while Py around 0.015 is the threshold in the abstract model.

The following two additional methods were investigated for comparative evaluation:

Method 1: All agents have the identical word-meaning relation (vocabulary table) a
priori. Therefore, when an agent utters a word, each listener is either successful or
unsuccessful and cannot be a misunderstanding listener or an ignorant listener. No
genetic operators are used, and there is no evolution.

Method 2: There is no communication at all. All agents are silent all the time.
There is also no evolution.

We have conducted 10 trials of the comparative experiments. The parameters have
the same values as in the experiment shown in Plate 6. Results are shown in Table 1.
Table 1 shows the average energy value and the maximum energy value among all
agents, and the number of occurrences of all food sources being exhausted. We refer
to the method based on the original agent-based model as Method 0 in this table. It
is shown that the maximum energy value and the average energy value are higher in
Method 0 than in Method 1 and Method 2. This means that the evolution of the vocab-
ulary table contributed to the efficient task execution in these experiments. However,
the number of occurrences of all food sources being exhausted is slightly higher in
Method 1 than in Method 0. The cause of this seems to be that the communication
with the identical word increased the cases of all food sources being exhausted, al-
though it made the agents that heard the word waste time and energy. It is also shown
that Method 2 (no communication) shows poor performance as compared with the
other two methods. These results mean that the role of the evolving communication
system with linguistic diversity is significant for the foraging behavior in the population
of agents.

4 Discussion

4.1 Observed Linguistic Diversity

The results of the experiments imply that linguistic diversity grows when population
size, mutation rate, or restriction on resources becomes greater. Figure 5 shows this
implication roughly. From another point of view, it can be said that the communication
system adapts to the growth of population size, mutation rate, or restriction on resources
by increasing its linguistic diversity. One extreme case is that there is no diversity. This
corresponds to the case where all agents shared an identical vocabulary table in the
experiments with small mutation rates, or the case where all agents were silent in the
experiments allowing silent individuals. The other extreme case is where they share
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Table I. Results of the comparative experiments.

Method 0 Method 1 Method 2
Avg E. (max E) AvgE. (max E.) AvgE. (max E.)
Trial No. Exhaustion Exhaustion Exhaustion

1 —1254 (4004) —3608 (4354) —4508 (4409)
175 184 131

2 —2667 (4529) —2715 (4392) —5016 (4634)
166 179 143

3 —3560 (4476) —4096 (4200) —5595 (4305)
166 170 140

4 —3654 (4242) —3698 (3824) —2219 (4193)
168 171 137

5 —33062 (4143) —1908 (4319) —3716 (3905)
162 170 145

6 —1039 (4680) —4300 (3952) —2052(3953)
170 175 127

7 —2933 (4186) —396 (3933) —3764 (4195)
165 177 139

8 —2011 (4371 —2601 (4676) —5492 (3920)
168 183 147

9 —2239 (4427) —3509 (4498) —3531 (3675)
171 169 139

10 —2035 (4060) —1759 (4174) —4203 (3619)
161 173 122

Average —2475 (4312) —2859 (4232) —4010 (3081
167 175 137

no stable and identical vocabularies at all, and they thus cannot efficiently transfer
information by communication systems. This corresponds to the case with a quite
large mutation rate in the experiments. The results of the experiments on the agent-
based model have shown that the evolutionary dynamics could maintain a proper level
of linguistic diversity and attain effective task execution.

There was a tradeoff between the monopoly of the resources discovered by an
agent itself and the sharing of the resources discovered by other agents (to be exact,
sharing with risks of additional competition). When the former exceeded the latter,
the linguistic diversity observed in the experiments was generated by the selection
pressure. This selection pressure allowed the individuals with new words to increase
in the population.

In other words, individuals with new words can increase by making others respond
with inappropriate reactions through misinterpreted words, which can be called func-
tional deception, but not intentional deception (deception based upon manipulation
of belief states). All agents became silent when we allowed individuals to be silent.
In this case, they withheld information about food sources and thereby increased their
fitness relative to others. We can call it another primitive form of deception. This type
of deceptive behavior in nonhuman animals has been reported. In chimpanzees, food
calls are given by individuals at relatively large food sources (implying that the costs
of increased feeding competition may be negligible) [18]. Also, in some species, the
probability of calling in the context of food is less than 100%, suggesting the possibility
that individuals sometimes suppress their calls [8].
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Figure 5. Growth of linguistic diversity.

The invasion of a silent population and the generation of linguistic diversity dis-
cussed in this article are closely linked to the issue of the origin of altruism [1]. Food
calls would appear to be altruistic in general, because those who announce their discov-
eries are essentially inviting increased food competition and, consequently, potentially
decreasing their own access to food. Kin selection and reciprocal relationships are
strong candidates for its explanation. It has also been reported that there is social
pressure making individuals call. Individual rhesus who found food but failed to call
and were detected by other group members received more aggression than individuals
who called upon discovery [7]. The result that the silent population disappeared when
we reduced the maximum amount of food sources that individuals could obtain to half
might be a candidate for its explanation at the lowest level.

The effects of incorporating a learning mechanism into these models would be worth
investigating, though we have focused on the evolutionary dynamics of the linguistic
diversity in this article. It is clear that the effects depend on the adopted learning
algorithm. If we adopt a learning algorithm that uses the rewards in conversations
as teacher signals in learning and modifies the word-meaning relations gradually, we
would expect the learning mechanism simply to accelerate the evolutionary dynamics
observed in these experiments. However, the contributions of population size, resource
restriction, and mutation rate to linguistic diversity could be rather complex.

4.2 Possibility of Utilizing the Diversity

Application of the results of alife studies has been investigated, and it has begun to bear
fruit in various fields. One of the promising fields is robotics. We have conducted the
experiments on the agent-based model partly based on the idea that the communication
system that evolves and maintains linguistic diversity would be beautifully fit to be used
as the flexible mechanism for communication among a population of autonomous
robots that attain cooperative behavior. The results in the experiments concerning
the agent-based model are encouraging in the sense that the communication system
supported the cooperative task execution.

The result that the energy value in the evolutionary model is higher than that in
the model where the agents share a vocabulary table supports the hypothesis that in
an environment with limited amounts of resources, containing individuals with poor
linguistic facilities, linguistic unification is not necessarily adaptive. Here, we can grasp
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the observed evolutionary dynamics in the agent-based model from another point of
view. Unification of word-meaning relations generated the loss of time and energy
found in Method 1. In that case, if noise disturbed the communication to a certain
extent, the loss would be reduced (Figure 6). We believe that in Method 0, the evolu-
tionary mechanism realized the optimal linguistic diversity instead of the noise in this
context. The results of the preliminary experiments support this.

The complexity in the mechanism of the communication system is extremely re-
duced, because we have aimed to implement a minimal communication system that
generates linguistic diversity that could be utilized in engineering fields. Communica-
tion systems with far richer facilities, for example, those with which agents can negotiate
on sharing the resources, would surely rank higher. On the other hand, slightly ex-
tended versions of the current communication system can be investigated, for example,
as follows:

Version 1: The agents that found the sources signal only when they finish feeding
and there are food sources left. This modification of setting can reduce the cost of
listener agents.

Version 2: The volume of the food calls is set to be proportional to the amount of
the food sources. This modification makes the number of the listening agents vary
correspondingly to the amount of the food sources, which can reduce the cost of
listener agents.

We expect both versions will rank higher than the results of our experiments, though
we do not have enough evidence that in nonhuman animals there are such communi-
cation systems. Some species, however, have a food call that refers to the quality of
food sources.

One of the most difficult hurdles to overcome to achieve physical realization based
on the evolutionary dynamics, in general, is the relationship between simulations and
actual robot execution. Even the experiments on this simple communication system
were slow to evolve in the agent-based model. It is very difficult and may take as much
time to run detailed simulations as it would take to build the actual robot systems. At
the same time, it is also impractical to build and observe many actual robots during
many generations. Therefore, we plan to adopt a hybrid simulated/embodied selection
regime [11]. Large numbers of simulated robots are examined in simulation, but only the
promising subset of these are actually built and examined, thereby reducing the scope
of the problem. Simulated evolution of communication systems will also be necessary
for speeding up the adaptation in the physically realized robotic systems in the near
future, because the communication systems will be able to adapt to rapid changes in
dynamic environments.
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5 Summary

This article reports on the current state of our efforts to shed light on the origin and evo-
lution of linguistic diversity, using synthetic modeling and artificial life techniques. We
have constructed a simple abstract model for a communication system that is designed
with regard to referential signaling in nonhuman animals. The evolutionary dynamics
of vocabulary sharing were analyzed based on these experiments.

The results have shown that only a subset of initial conditions leads to the unifi-
cation of vocabulary, and linguistic diversity evolves corresponding to the changes in
population size, mutation rate, and restriction of resources. These facts support the
hypothesis that in an environment with limited amounts of resources, containing indi-
viduals with poor linguistic facilities, linguistic unification is not necessarily adaptive.
We have also observed that unification of vocabulary causes a decrease in genetic
fitness of the individuals.

We have incorporated the idea of the abstract model into a more concrete situation
and have presented an agent-based model to verify the results of the abstract model and
to examine the possibility of utilizing the linguistic diversity in the field of distributed
AT and robotics. It has been shown that selection pressure could explain the linguistic
diversity in the cooperative behavior of multiple agents.

The proposed models can be extended in several directions. One obvious direction
would be to investigate a model that focuses on not only evolution but also learning.
Another direction would be to analyze the evolutionary dynamics using embodied
multi-agent systems. One of the issues that we currently focus on is the relation between
linguistic diversity and noise, which is partly described in Section 4.
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