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Abstract
Evolutionary robotics is a challenging technique

for creation of autonomous robots based on the
mechanism of Darwinian evolution. In the con-
ventional evolutionary robotics, the “simulate-and-
transfer” method has been adopted. We believe that
the most likely candidate methodology in evolutionary
robotics for near future is “Situated and Embodied
Evolution”, in which real robots in real world evolve
based on the interactions with actual environment and
real robots. It becomes important when realizing Sit-
uated and Embodied Evolution to decentralize the al-
gorithm for evolution computation, because it could
make implementation of efficient systems easier and
could accelerate diversification in robot behavior. This
paper proposes a distributed and asynchronous genetic
algorithm for flexible and efficient robotic systems that
realize Situated and Embodied Evolution. This pa-
per also reports on the performance of Situated and
Embodied Evolution based on the results of the pre-
liminary experiments on the robotic system we have
implemented.
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1 Introduction

Evolutionary robotics is a challenging technique
for creation of autonomous robots based on the
mechanism of Darwinian evolution [1]. In the con-
ventional evolutionary robotics, the “simulate-and-
transfer” method has been adopted (Figure 1(a)).
However, several issues are increasingly problematic
for the method.
1) It is very difficult or takes long time to simulate
complex behavior of robots and complex environment.
2) It is necessary to model the environment every time
when a new task is given.
3) Scalability to the number of the robots is poor in
case of the systems with a population of robots having

Figure 1: Schematic diagram for evolution of robots:
(a) “Simulate-and-transfer” method, (b) “1 genome
per robot” method, (c) Proposed method.



complex interaction among them.
We believe that the most likely candidate method-

ology in evolutionary robotics for near future is “Sit-
uated and Embodied Evolution”, in which real robots
in real world evolve based on the interactions with
actual environment and real robots. It becomes im-
portant when realizing Situated and Embodied Evolu-
tion to decentralize the algorithm of evolution (genetic
algorithm), because decentralization of evolutionary
computation could make implementation of efficient
systems easier and could accelerate diversification in
robot behavior.

Very few studies regarding Situated and Embod-
ied Evolution have been conducted. Among them,
Watson et al. proposed a method to realize Situated
and Embodied Evolution based on a motivation that
is similar to ours described above [2]. They adopted a
straightforward method for evolutionary computation,
in which each robot represents one individual and pop-
ulation share their genetic information by transmitting
information among them when they encounter (Fig-
ure 1(b)). However, the progress of evolution in this
method directly depends on the number of the robots
and the frequency of encounter with other robots.

This paper proposes a distributed and asyn-
chronous genetic algorithm for flexible and efficient
robotic systems with adequate scalability that realize
Situated and Embodied Evolution. There are two lev-
els of optimization in this method (Figure 1(c)). There
is transmission of good genes among robots when they
encounter. Also, each robot executes a genetic algo-
rithm within itself by emulating many “virtual indi-
viduals” based on time-sharing. This method thus re-
duces dependence of the number of the robots and of
the frequency of encounter with other robots on the
speed of evolution, which can realize flexible and effi-
cient robotic systems with adequate scalability. This
paper also reports on the performance of Situated and
Embodied Evolution based on the results of the pre-
liminary experiments on the robotic system we have
implemented.

2 A Model for Situated and Embodied
Evolution

Parallelization of genetic algorithms (GA) has been
discussed in the field of evolutionary computation, mo-
tivated mainly by the desire to reduce the overall com-
putation time. Most of the proposed parallel GAs
fall into a class which has come to be called “island
model” parallel GA. Island model parallel GA divides

a population into subpopulations and assigns them to
processing elements on a parallel or distributed com-
puter. Then each subpopulation searches the optimal
solution independently, and exchanges individuals pe-
riodically.

Our distributed genetic algorithm for Situated and
Embodied Evolution can be called island model par-
allel GA in that each robot has a subpopulation,
searches the optimal solution, and exchange good in-
dividuals. However, there is a significant difference in
our model from the conventional island model parallel
GA as follows.
1) Communication topology and frequency are dy-
namic, which depends on the robot behavior, espe-
cially encounters of robots.
2) Fitness evaluation is conducted as robot behavior in
real word, which needs quite long time compared with
other evolutionary operations done in the robots.
3) Optimal solution varies depending on the behav-
ior range and physical characteristics of each robot,
besides the dynamic property of the environments.

Figure 2: Evolutionary processing in each robot.

Typical implementation of evolutionary computa-
tion in each robot is shown in Figure 2. Each robot has
a “gene pool” and a “gene queue”. The gene pool has
an evolved subpopulation, whose individuals are ex-
pressed as genomes and sorted by their fitness values.
A new individual is generated by selecting (copying) 2
individuals from the gene pool based on roulette wheel
selection, and operating one point crossover and mu-



tation. The new individual is then put into the gene
queue, and waits for being evaluated. New individuals
migrated from other robots are also put into the gene
queue, and reevaluated in this robot, because there
can be difference in their environments and physical
characteristics among robots. A dequeued individual
is loaded to specify the robot behavior, and after a
given length of time, it is attached with the fitness
value, and stored into the gene pool. The gene pool
has a limited capacity, and therefore the evaluated in-
dividuals will be discarded if their fitness values are
lower than the one of the worst individual in the gene
pool. This mechanism realizes time sharing among
many virtual individuals in each robot.

Migration procedure runs independently of the
above-described GA process in each robot. An in-
dividual to be transmitted is selected (copied) from
the gene pool based also on roulette wheel selection
asynchronously. Each robot has a chance to send its
selected individual every predefined time interval, the
timing of which is randomly decided every event. The
robot sends a selected individual with following prob-
ability which depends on its fitness value.

If(A <= C){ P = 50(
C −A

M −A
) + 50 } (1)

else if(A > C){ P = 50(
C − S

A− S
) } (2)

(P: Probability of transmitting, A: Average fitness, M:
Maximum fitness, S: Minimum fitness, C: Fitness of
the selected individual)

Figure 3: Asynchronous migration of individuals.

3 Preliminary Experiments

We have implemented a minimum experimental
robotic system for the purpose of evaluating the pro-
posed scheme described in the previous section. We
used six Khepera miniature mobile robots (Figure 4).
The issue of power supply also becomes important
when realizing the Situated and Embodied Evolution
paradigm. Our solution in the preliminary experi-
ments is to adopt a power supply mechanism by which
each robot moves around in a floor-and-ceiling struc-
ture and receives power continuously from a panto-
graph located on top of it (Figure 5). Also, a charging
battery built in each robot backs up the mechanism.
Infra-red communication is used for transmission of
individuals between robots.

Figure 4: Khepera robot (Left - Khepera+IR commu-
nication turret A: Battery, B: Infra-red sensor, C: Pan-
tograph, D: Infra-red emitter/receiver, E: Incremental
DC motor, F: Wheel, Right - Layout of 8 infra-red
sensors).

Figure 5: Experimental setup (A: Continuous power
supply, B: Infra-red emitter/receiver unit, C: Power
supply).

We adopted a simple two-layer neural network to
control the behavior of each robot (Figure 6). The
structure of the neural network (connection weights
and the thresholds) was evolved by distributed genetic
algorithm described in the previous section. In the
neural network, 7 input nodes corresponded to 6 sensor



inputs and a threshold, each of which was expressed
by 5 bit genome information. There were 2 output
nodes corresponding to right and left motor outputs.
So, the length of the genome was 70 bits.

Figure 6: Relation between individual information and
the structure of neural network.

Robot control programs (neural networks) for an
avoidance task were evolved in the preliminary experi-
ments for the purpose of confirming the effectiveness of
the model. Each individual is evaluated by the length
of movement without hitting the walls or other robots
as follows:

fitness += SensorOff()(R Motor+L Motor), (3)

where SensorOff() returns 0 when two or more infra-
red sensors are activated, and otherwise returns 1,
and R Motor and L Motor correspond to the rotation
speeds of the right and left motors. Fitness value of
each robot is increased at predefined time intervals
when there is no input from eight infra-red sensors
(which means that there are no obstacles in the neigh-
borhood of the robot) and at least one motor is acti-
vated.

The result is shown in Figure 7, where the hori-
zontal axis represents the total number of evaluated
individuals, and the vertical axis represents the fit-
ness. This graph shows the typical results of following
4 cases: the cases when the size of the gene pool is
1 (“1 genome per robot method”), 5 and 10, and the
case in which there is no migration among robots and
the size of the gene pool is 5. Average fitness of every
20 individuals is plotted in each case. We can see from
this figure that the case with gene pool size of 5 with
migration shows the best performance though the op-
timal size depends at least on the number of robots
and the given task. It is also shown that migration

Figure 7: Evolution of robot behavior (Number of
robots: 3, Mutation rate: 2%).

has a large role in this scheme. In general, there can
be an unexpected difference in behavior among robots
in real world. Migration of good individuals can im-
prove the performance of the robots with unevolved
gene pool.

4 Conclusion

We have proposed a distributed and asynchronous
genetic algorithm for flexible and efficient robotic sys-
tems with adequate scalability that realize Situated
and Embodied Evolution. We have also reported on
the performance of Situated and Embodied Evolution
based on the results of the preliminary experiments
on the robotic system we have implemented. Further
experiments will include investigation of performance
evaluation of the scheme targeting at more practical
tasks.
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