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Abstract

This paper focuses on the techniques of evolution-
ary computation for generating players performing
tasks cooperatively. However, in using evolutionary
computation for generating players performing tasks
cooperatively, one faces fundamental and difficult deci-
sions including the one regarding the so-called “credit
assignment problem”. We believe that there are some
correlations among design decisions and therefore a
comprehensive evaluation for them is essential. We
first list three fundamental decisions and possible op-
tions in each decision in designing methods for evolv-
ing a cooperative team. We find that there are 18
typical combinations available to execute. Then we
describe the ultimately simplified soccer game played
on one-dimensional field as a testbed for comprehen-
sive evaluation for these 18 candidate methods. The
results are analyzed in this paper.

1 Introduction

Some problems can be efficiently solved only by
teams consisting of cooperative autonomous players.
Many researchers have developed methods that don’t
require human designers to define specific behaviors
of players for each problem. The work reported here
focuses on the techniques of evolutionary computa-
tion, which has been regarded as one of the most
promising approaches to solve such complex problems.
However, in using evolutionary computation for gen-
erating players performing tasks cooperatively, one
faces fundamental and difficult decisions including the
one regarding the so-called “credit assignment prob-
lem” [1]. For example, if we can only evaluate the
global performance of each team, how do we divide
up the team’s performance among the participating
players? We believe that there are some correlations
among design decisions and therefore a comprehen-
sive evaluation for them is essential, although not a
few researchers have proposed evolutionary methods
for evolving teams performing specific tasks.

The rest of the paper is organized as follows. In
Section 2, we list three fundamental decisions and pos-
sible options in each decision in designing methods for
evolving a cooperative team. We find that there are

18 typical combinations available to execute. Then, in
Section 3, we describe the ultimately simplified soc-
cer game played on one-dimensional field as a testbed
for comprehensive evaluation for these 18 candidate
methods. Section 4 reports on the results of the com-
prehensive evaluation of these methods, and Section 5
summarizes the paper.

2 Methods for Evolving a Team

Three fundamental decisions are necessary when
one designs an evolutionary computation method for
generating players performing tasks cooperatively, and
there may be not a few combinations of the options in
these decisions.

The first decision is: How many evolving popula-
tions are there? The answer is derived by considering
whether or not the population structure depends on
the number of the teams in the game or the number
of the player roles in the game (Figure 2). Suppose
that the game is played by 2 teams consisting of 3
players. We can assume an evolutionary computation
with 2 populations corresponding 2 teams, with 3 pop-
ulations corresponding 3 players, or with 6 populations
corresponding to 2 teams and 3 players. So, the typ-
ical options for the number of the populations are 1,
R, T and T · R (T : Number of teams in the game, R:
Number of the player roles in the team).

The second decision is: What does each individ-
ual (genome) represent? Typical options are a player
and a team. In case of that each genome represents a
player, there can be two further options: all players in
the team share one genome (“homogeneous players”)
and all players are represented by different genomes
(“heterogeneous players”). Also in case that each
genome represents a team, there can be two further
options: whether or not the roles of the players rep-
resented in each genome are fixed. In case that the
roles of the player is fixed, for example, if a part of a
genome represents a defender in the game, this part
always represents a defender.

The third decision is: How is the fitness function
evaluated? One option is that fitness is evaluated for
a team as a whole. In this case, if each genome rep-
resents a player, each player in a team is supposed to
have the same fitness. The other option is that the fit-



ness is evaluated for each player directly or indirectly.
Direct evaluation of players in a cooperative team is
sometimes a very difficult task, as in general altruistic
behavior is important or essential in the establishment
and maintenance of cooperation in population. Some
methods for indirect evaluation has been proposed [2].
We adopt a method as this option in which the fit-
ness of a player is defined as the decrease in the fitness
of the team when the player is replaced by a prede-
fined “primitive player” which has a minimum set of
behavior rules.

Therefore, there could be 18 combinations available
to execute for evolving players performing tasks coop-
eratively as shown in Table 1.

a) 1 population

b) R   
   populations

d) T  R
    populations

c) T populations

Games

Figure 1: 4 options for the population structure. a)
The population represents all player roles in all teams.
b) Each population represents one player role in all
teams. c) Each population represents all player roles in
each team. d) Each population represents one player
role in each team.

3 Ultimately-Simplified Soccer Game

The ultimately-simplified soccer game is defined as
a testbed for comprehensive evaluation for these 18
candidate methods. It is a 2 vs. 2 player game played
on one-dimensional cellular field as shown in Fig-
ure 2 (field[1-20]). Players are homogeneous except
their starting positions (Left team: player1 (field[8]),
player2 (field[5]), Right team: player1 (field[13]),
player2 (field[16])), and each player makes a run, drib-
bles a ball, makes a shot on goal or put a ball up to the
player of his/her team. One of the action is decided
to take based on the relative locaton of all players and
the ball (72 patterns). Action is taken in turn alter-
natively between 2 teams. Each step in the game is
composed of 4 actions by all players.

Multiple players can’t be in a cell. The ball is al-
ways in a cell where a player resides. Moving action

of a player with a ball means dribbling. Players move
to either of the neigboring cells, but when a player
moves to the cell with a player, it skips the neigbor-
ing player (it cannot skip more than one player). In
this case, if both are in opposite teams and one of
them has a ball, the ball moves to the other player
with a certain probability (Psteal). If there is an op-
ponent player between the passer and the receiver, the
ball-passing becomes failure with a certain probabil-
ity (Pcut), and in this case the ball moves to the cell
where the oppenent player resides. The success rate
for shooting is anti-proportional to the length between
the player’s position and the goal irrespective of the
presence of the oppsite players. In case of scoring a
goal, the game restarts with initial player-location. In
case of the failure, the game restarts after the ball
moves to the opposite player nearer to the goal post.

We expect two types of altruistic behavior which
could lead to the emergence of cooperation in the
game. One is putting a ball up to the other player
in his/her team instead of dribbling the ball or get-
ting a shot at the goal. The other type is making a
run in the opposite direction but not toward the goal.
The former type of altruistic behavior is analyzed in
4.3.

4 Evaluation

4.1 Expression of the Players

Each player selects next action deterministically
based on the positional relationship of players and the
ball. In the recognition of each player, opponent play-
ers are not distinguished. So, to be precise, genetic
information of each player decides the next action of
the player based on one of 48 patterns, in which each
pattern is associated to one of the four actions: run-
ning/dribbling to the right, running/dribbling to the
left, feeding (passing) the ball to the player of his/her
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 The success rate for ball-passing is 
1 - (Pcut   number of opponent players). 

Moving/Dribbling
 If a player with a ball moves to 
the cell with a opponent player, 
he/her loses the ball with a 
probability of Psteal. 

l

.

Figure 2: The ultimately simplified soccer game.



Table 1: Classification of the methods for evolving a team.

Population structure
depends on Number of Each genome represents Unit of fitness evaluation is Code name

T? R? populations

a player
by direct evaluation 1-PHe-PD

a player
heterogeneous players by indirect evaluation 1-PHe-PI

No 1
a team (same fitness in a team) 1-PHe-T

homogeneous players a team (same fitness in a team) 1-PHo-T
No

a team
fixed player-roles a team 1-TFi-T

unfixed player-roles a team 1-TUn-T

a player
by direct evaluation R-PHe-PD

Yes R a player heterogeneous players by indirect evaluation R-PHe-PI
a team (same fitness in a team) R-PHe-T

a player
by direct evaluation T-PHe-PD

a player
heterogeneous players by indirect evaluation T-PHe-PI

No T
a team (same fitness in a team) T-PHe-T

homogeneous players a team (same fitness in a team) T-PHo-T
Yes

a team
fixed player-roles a team T-TFi-T

unfixed player-roles a team T-TUn-T

a player
by direct evaluation TR-PHe-PD

Yes T · R a player heterogeneous players by indirect evaluation TR-PHe-PI
a team (same fitness in a team) TR-PHe-T

(T : Number of teams in a game, R: Number of player roles in a team)

team, making a shot on goal. Therefore each player is
represented by 96 bits genetic information.

4.2 Evaluation Setting

The evaluation is conducted through two steps: an
evolution step and an evaluation step. In the evo-
lution step, populations are evolved for 2000 genera-
tions using 18 methods independently. Each popula-
tion has 40 individuals in all methods. The round-
robin tournament of the ultimately-simplified game of
200 steps is held to evaluate the fitness in each gen-
eration. The parameters Psteal and Pcut are set to
0.8 and 0.4 respectively in both steps. In case of
<team-evaluated> option, fitness is calculated as the
goals the team acquired minus the goals the opponent
team acquired. In case of <direct-player-evaluated>
option, fitness is calculated as the goals the player ac-
quired minus the opponent team’s goals divided by 2.
Then tournament selection (selecting repeatedly the
individuals with higher fitness as a parent by compar-
ing randomly picked 2 individuals), crossover with a
60% probability and one-point mutation with a 3%
probability are adopted as genetic operators. In case
of <indirect-player-evaluated> option, we use a primi-
tive player designed a priori as follows. In case of the
player keeps a ball, if he (or she) is behind the other
player he passes the ball to the other player, otherwise
he makes a shoot. In case of the player doesn’t keep a
ball, if he is behind the other player, he moves back,
otherwise he moves toward the goal. In the evaluation
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T-PHo-T 

1/T-PHe-PI 

1/T-PHe-T  

1/T-PHo-T

1/T-TFi-T

1/T-TUn-T

R/TR-PHe-PD

R/TR-PHe-PI 

R/TR-PHe-T
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Figure 3: The average winning ratio of the best 10
teams evolved by each of 18 methods.

step, the best team is selected in each of the last 50
generations in the evolution step, and selected 50×18
teams conduct the other round-robin tournament of
the game of 1000 steps.

4.3 Evaluation Results

Figure 3 shows the winning ratio of the teams
evolved by 18 methods, each of which is the average
of winning ratio of the best 10 teams from 50 teams in
the all-play-all tournament described above. Table 2
(the left-hand in the results) also shows it. Each pair
of bars shows the results of the strategies with same
options in genome representation and fitness evalua-



tion except the population structure option (Upper
white bars: <1/R-population> options, Lower black
bars: <T/T · R-populations> options).

It is shown that the top 3 methods in
this evaluation are <1-population, team-represented
with fixed player-roles, team-evaluated>, <T · R-
population, heterogeneous-player-represented, team-
evaluated>, and <1-population, homogeneous-player-
represented, team-evaluated>. Their winning ratios
are 74.6%, 74.1% and 73.5% respectively. An addi-
tional evaluation using the team consisting of 2 prim-
itive players showed that its winning ratio was 16.0%.
This ratio could be a measure for the performance of
the methods.

Regarding to population structure, <1/R-popul-
ations> options performed better than <T/T · R-
populations> options in general. This might be be-
cause of the ill-balanced evolution, over-specialization
or “round and round going”. Adoption of an asym-
metric game as a testbed would make this ten-
dency weaker. Regarding to genome representation,
<homogeneous-player-represented> option performed
well in general. Also, <team-represented with fixed
player-roles> option performed well, though <team-
represented with unfixed player-roles> option per-
formed badly. Regarding to fitness evaluation, <team-
evaluated> option performed well in general as the fact
that 5 methods among top 6 methods adopt this op-
tion has shown. The performance of <indirect-player-
valuated> option depended largely on the other op-
tions.

We have observed interesting separation of roles
among 2 players in the teams with high winning ra-
tio. For example, in some teams the forward player
tended to play near the goal and the backward player
tended to move in order to intercept the ball, and in
some teams both players seemed to use man-to-man
defense.

Next we examined the relationship between altruis-
tic behavior which could lead to cooperative behavior
and the winning ratio. Here we focus on the follow-
ing behavior pattern. A player with a ball makes a
pass for the other player, who receives the ball with-
out being intercepted and then successfully shoots a
goal immediately or after dribbling. We termed this
series of actions as “assisted goal”. Table 2 shows the
assist ratio, which is the ratio of assisted goals among
all goals, and winning ratio of the teams evolved by 18
methods. We see from this table that good perform-
ing teams have a tendency to also have a high assist
ratio. In contrast, it is not necessarily the case that
teams with a high assist ratio have a tendency to have
a high winning ratio. This means that above-defined
assisting behavior is a necessary requirement for the
teams to perform well.

It is a remarkable fact that <indirect-player-
evaluated> option made the assist ratio much higher

Table 2: Average winning ratio and assist ratio.

ResultsCode name
Winning ratio Rank Assist ratio Rank

1-PHe-PD 0.673 7 0.146 15
1-PHe-PI 0.609 11 0.289 10
1-PHe-T 0.699 5 0.310 9
1-PHo-T 0.735 3 0.390 5
1-TFi-T 0.746 1 0.342 7
1-TUn-T 0.571 16 0.336 8
R-PHe-PD 0.607 12 0.109 16
R-PHe-PI 0.713 4 0.503 1
R-PHe-T 0.639 10 0.402 3

T-PHe-PD 0.574 15 0.080 17
T-PHe-PI 0.536 17 0.391 4
T-PHe-T 0.603 14 0.242 12
T-PHo-T 0.683 6 0.226 13
T-TFi-T 0.654 9 0.260 11
T-TUn-T 0.536 18 0.214 14
TR-PHe-PD 0.666 8 0.077 18
TR-PHe-PI 0.607 13 0.388 6
TR-PHe-T 0.741 2 0.416 2

compared with the winning ratio. As this option, we
adopted a method in which the fitness of a player is
the decrease in the fitness of team when the player is
replaced by the primitive player. This method should
generate the strong interaction between 2 players be-
cause it tends to make large decrease when the player
is replaced. Therefore the teams generated by the in-
direct evaluation method have a higher assist ratio de-
spite having the relatively low winning ratio.

5 Conclusion

This paper has focused on the methods for evolv-
ing a cooperative team by conducting a comprehen-
sive evaluation for 18 methods. We have found that
some methods performed well and at the same time
that there are complex correlations among design de-
cisions. Also, further analysis has shown that cooper-
ative behavior can be evolved and can be a necessary
requirement for the teams to perform well in even such
a simple game. Future work includes more detailed
analysis of cooperative behavior and extension of the
ultimately-simplified soccer game.
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