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Abstract
Recently, evolutionary algorithms coupled with simu-

lated developmental processes have been used successfully
for generating designs ranging from neural networks to
artificial creatures. Although several of these models do
exist, their evolutionary dynamics, and more specifically
how the ontogenic models themselves interact with artifi-
cial evolution are still poorly understood. One of these spe-
cific interactions, and of particular importance in biologi-
cal systems is heterochrony — the change in timing and
rate of developmental events by evolution. In this paper,
we analyze heterochronic change in one artificial develop-
mental model - the cellular encoding model first described
by Gruau [1]. For this purpose, we apply the framework
and methods defined by Alberch et al [2] for biological sys-
tems to neural networks evolved for the odd-3-parity prob-
lem. Preliminary results show that: 1) All heterochronic
changes occur with significant frequency; 2) The combined
effects of predisplacement, hypermorphosis, and neoteny
was the most common heterochronic change; 3) Pure reca-
pitulation (isomorphosis) is prevalent.

Keywords: Heterochrony, evo-devo, Cellular encoding,
Artificial embriogeny, Neural Networks.

1 Introduction

Evolutionary algorithms have been used successfully
for generating designs ranging from neural networks, to
full artificial creatures with both generated morphology
and behavior. One of the reasons for this recent success
is due to the integration of simulated developmental pro-
cesses with evolutionary algorithms. Although several of
these models do exist, their evolutionary dynamics, and
more specifically how the ontogenic models themselves in-
teract with artificial evolution are still poorly understood.

In biological systems, one of the key concepts in this in-
teraction is known as heterochrony. Heterochrony, as it is
usually defined in evolutionary biology, is the change in the
rate and timing of developmental events caused by evolu-
tion. Heterochrony is prevalent in the evolution of species:
some examples include the conservation of juvenile char-
acters in salamanders and the loss of the tadpole stage in
toads. Due to this, there is a wide array of studies and data
available on heterochrony in biological systems.

For artificial neural networks, previous studies have
shown that heterochrony does indeed occur in artificial sys-
tems: For instance, Cangelosi [3] evolved neural networks

for foraging food in a simulated environment. By compar-
ing the development processes between ancestor and de-
scendant networks, he could observe changes in the timing
of developmental events. However, this analysis was only
done for a small number of individuals, and it was not ex-
tended to a whole phylogenetic tree. Thus, studies focusing
on heterochrony in a large scale in artificial systems are
still lacking. Specifically, these questions are still largely
unanswered: 1) What kind of heterochrony processes are
more common in artificial systems? 2) How does the de-
velopmental model and the evolutionary parameters affect
heterochrony? 3) How does heterochrony in artificial and
biological systems relate to each other? These points are
the main motivations behind this paper.

In attempting to answer these questions, we applied the
framework defined by Alberch et al [2] for biological sys-
tems to the evolution and development of neural networks.
This framework defines a precise terminology for classi-
fying heterochrony. For simulating neural network de-
velopment, we used the cellular encoding model first de-
scribed by Gruau [1]. This is one of the earliest mod-
els described in the literature, and representative for gram-
mar based models of development. We used this encoding
coupled with genetic programming for solving the odd-3-
parity problem and then analyzed the resulting growing dy-
namics on important traits like the number of neurons, their
average degree and also how the fitness value itself changes
within ontogeny.

2 Alberch et al’s framework

The framework by Alberch et al for classifying het-
erochrony is widely used for biological systems. This
framework is based on the measurement and comparison
of quantitative traits, for instance, body length, width or
height. The traits are measured as development unfolds,
yielding growth curves. These growth curves can then be
compared between related species for understanding the
heterochronic change involved.

The basis for comparison lies on three metrics that can
be extracted from the growth curves: α — the time when
growth starts, β — the time when growth ends, and K —
the growth rate. Comparing these values between species
yields the outcomes summarized in figure 1. For instance,
considering only changes in the K parameter, two out-
comes are possible: if the descendant would grow faster
than the ancestor (K would be larger), the corresponding
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Figure 1: The formalism of Alberch et al. A trait measure
is plotted against developmental time in the X axis. The
solid line plotted from α to β represents the growth curve
for the ancestor, while the remaining ones possible hete-
rochronic outcomes for the descendant.

outcome is acceleration. The reverse process — the de-
scendant growing slower than the ancestor — is labeled
neoteny. Furthermore, heterochronic changes can be com-
bined on the three parameters, as for instance postdisplace-
ment and hypermorphosis would refer to an increase in
both α and K respectively.

3 The model

The phenotypes in this model are simple boolean neu-
ral networks: Nodes are simple threshold neurons, with a
threshold of either 0 or 1. The connections between neu-
rons can either be -1 or 1. Neurons are activated if the sum
of the values on their incoming connections is above their
threshold.

For the developmental model, we used the cellular en-
coding model by Gruau [1]. In this model, the neural net-
work starts as a single neuron and undergoes several devel-
opmental events as specified in the genotype. The geno-
type is represented as a Genetic Programming (GP) tree
with nodes as developmental commands such as neuron di-
vision, setting the weight and threshold and similar. Each
neuron has a pointer to the GP tree representing its cur-
rent developmental stage. Development occurs in a par-
allel fashion: in each time step, each neuron executes the
command pointed by its register in the tree and moves to
the following leaf. The arity of each GP node depends on
the command used: for instance, commands for neuron di-
vision have two children, representing separate programs
for each of the daughter neurons. Development for the net-
work finishes when all the neurons have reached their final
leaf node in the tree.

Using this model, we evolved networks for the 3-odd-
parity problem, a standard problem for GP. The solution
is defined as a neural network with at least 3 inputs, that
outputs true whenever the number of true inputs is odd.
A fitness function based on the number of wrong outputs

didn’t produce a good performance so we used the fitness
function used by Gruau in [1]. It is defined by:

f (outeval) = 1− I(outright ,outeval)

H(outright)
, (1)

where outeval is the output vector of the evaluated network
and outright the expected correct output vector for the prob-
lem. I(X ,Y ) is the mutual information between X and Y :

I(X ,Y ) =
1

∑
x=0

1

∑
y=0

PXY (x,y) · log2
PXY (x,y)

PX(x) ·PY (y)
, (2)

and H(X) is the information entropy of X :

H(X) =
1

∑
i=0

PX(i) · log2(PX(i)), (3)

with PX(x) as the probability of X = x, and PXY (x,y) as the
joint probability of X = x and Y = y. This fitness func-
tion is defined in the range [0,1], with 0 as the best fitness.
Please note that due to using mutual information, either
correct networks or networks that output the inversed ex-
pected output will have the same best fitness.

We adopted a GP based system without crossover, and
tournament selection was used. Each individual is mutated
(addition, deletion, replacement of nodes) with a certain
probability, while the others are simply reproduced. The
individuals are therefore connected among generations by
either reproduction or mutation, forming lineages.

4 Basic results

Using the model and fitness function described in the
above section, we evolved networks for analyzing hete-
rochronic change. Population size was 200, and the muta-
tion rate was set at 80%. The fitness graph for a typical run
can be seen in figure 2 and the best network in figure 3. All
of the results reported on this article are from this run. We
can see that the average fitness gradually decreased while
the best fitness decreased discontinuously, and this model
was able to solve the problem in 314 generations.
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Figure 2: Fitness graph for a typical run.
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Figure 3: The best neural network for the run. Please note
that the cellular encoding model may produce more inputs
and outputs then necessary, as it can be seen in this case,
although only one output is actually used. The output node
in the center is the used one.

5 Measuring heterochrony

Next, we analyzed the networks for the following traits:
number of nodes, average connectivity (taking into account
both incoming and outgoing connections) and how the fit-
ness value changes within ontogeny. Sample growth curves
for the best individual on each trait can be seen in figure 4.

One significant problem in using the Alberch et al’s
framework described before is how to extract significant
α , β and K parameters from the growth data. This is also
an issue in biological systems although they tend to fol-
low more regular patterns. One common approach is to use
non-linear regression to fit the data to a growth model and
extract the parameters from the fitted model. This, for in-
stance, was applied by Creighton and Strauss [4] to rodent
growth data.

This approach works well for biological systems be-
cause their growth dynamics tend to follow regular patterns
and there are several sensible mathematical models. These
models fit well the data and are grounded on experimental
evidence. In contrast, our artificial developmental model
can generate rather irregular growth curves — with sudden
reverting ontogenic polarity as it can be seen in figure 4 (b)
or even with sharp discontinuities as in figure 4 (c).

Another possible approach is simply to extract the val-
ues directly from the experimental data, for instance K
could be defined as the average growth increment during
the development period, or estimated by linear regression.
An example of this approach can be seen in Pigliucci [5].
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Figure 4: Growth curves for the analyzed traits on the best
individual. Both growth data and fitted curves are shown.
For the number of nodes, a sigmoidal curve was fitted,
while simple linear regression was used for the other traits.

In this paper we decided to use both approaches depend-

Table 1: Summary for the determination coefficient for dif-
ferent growth models, on the number of nodes trait. R2, the
determination coefficient, indicates how well the model fits
the data, with 1 being a perfect fit. The value shown is the
average R2 value among all the individuals in the winning
lineage (the lineage of the best individual in the last gener-
ation).

Model Average R2

Linear regression 0.933
Von Bertalanffy 0.968

Sigmoid 0.974

ing on the trait used. The number of nodes trait seems to
follow dynamics similar to biological systems, so we at-
tempted to fit the data to growth models commonly de-
scribed in the literature. We attempted the Von Berta-
lanffy’s growth function defined as:

y = Sa(1− e−k(t−t0)), (4)

and also the standard sigmoidal function defined as:

y =
Sa

1 + e−k(t−t0)
. (5)

In both functions, Sa stands for the maximum value
achieved during growth and k for the speed of growth. We
used a Gauss-Newton algorithm for fitting the data, with Sa
fixed to the last value reached during development and the
other remaining parameters (k,t0) were initialized to ade-
quate starting values. A summary of the results for the fit
can be seen in table 1. The determination coefficient R2

was the highest on average for the sigmoidal function and
therefore we adopted this model . We defined K as the
same parameter k in the sigmoidal function, α and β as the
period when the model reaches 10% and 90% of the total
growth Sa respectively. This approach is coherent with the
above mentioned study by Creighton and Strauss [4]. An
example of this fitting can be seen in figure 4 (a).

For the other remaining traits, we used simple linear
regression and defined K as the slope of the fitted line.
This approach was used because the other models assume
monotonous increase in the trait while the developmental
curves in these traits can decrease. α and β were defined
as the period where growth can be observed to effectively
start and stop in the data. Examples of these fittings can
be seen in figures 4 (b) and 4 (c). This approach cannot be
considered completely adequate as the fitting is not suffi-
cient (R2 is low due to the complexity of the developmen-
tal curves in these traits), but nevertheless it allows to have
consistent values for the three parameters.

By comparing the parameters between related individ-
uals in the lineage it is therefore possible to classify the
heterochrony process involved as depicted in figure 1. Fig-
ure 5 shows the transitions of α , β and K for each trait
in the winning lineage. In the transitions for the number
of nodes trait, we can see the gradual decrease in α and
the increase in β with large fluctuations, and that K con-
verged to a small value. We also see transitions similar to
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the number of nodes in the average degree trait, except for
the steady evolution of α , and a quite different evolution
of all parameters can be seen for the fitness trait. Figure 6
shows the occurrences of the combined heterochrony pro-
cesses for the number of nodes trait in the winning lineage.
Isomorphosis refers to no change at all in any of the param-
eters between ancestor and descendant.

Figure 5: Evolution of the α , β and K parameters for the
winning lineage on all traits.

As it can be seen in figure 6, all possible heterochronic
changes occur with significant frequencies. One interest-
ing point is that pure recapitulation (isomorphism) seems
to be a common heterochronic change in these runs. Even
accounting for errors in estimating the parameters, this
should be significant considering the low reproduction rate
(20%). The fitness function shows sharp discontinuities (as
can be seen from figure 2) and therefore it may be exerting
selection pressure for either neutral or invalid mutations.

The most frequent heterochronic change is the combina-
tion of predisplacement, hypermorphosis and neoteny. The
net effect of this combination is that developmental time in-
creases on the descendant. This can also be observed on the
gradual increase in the β parameter in figure 5. In the cel-
lular encoding model, developmental time is roughly pro-
portional to the GP tree size; Therefore developmental time
is expected to increase, as in GP systems the average tree
size gradually increase with evolutionary time (tree bloat).

6 Conclusion

As the use of simulated developmental processes in-
creases, it becomes more important to understand their dy-
namics. In this paper, we have shown that the framework
by Alberch et al is a valid method for studying dynam-
ics in artificial systems, by measuring heterochrony in the
evolution of neural networks. We successfully observed
heterochrony in the number of neurons trait such as the fre-
quent occurrences of the combination of predisplacement,
hypermorphosis and neoteny, and also pure recapitulation.
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PreD+N+ProG
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Figure 6: Occurrences of heterochrony for the number of
nodes trait on the winning lineage. I - isomorphism; PostD
- postdisplacement; PreD - predisplacement; N - neoteny;
A - acceleration; HM - hypermorphosis; ProgG - Progene-
sis.

This framework is particularly well suited for artificial sys-
tems because it is solely based on observable quantitative
traits and it can be applied regardless of the epigenetic pro-
cess involved. This should be particularly important when
comparing heterochronic change between different devel-
opmental models, as for instance, cell chemistry and gram-
mar based models. Future work will therefore continue
on extending this analysis for different models and fitness
functions.
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