
Evolution, Development and Learning in the Prisoner’s Dilemma Game

Yukimasa OGAWA Takaya ARITA
Graduate School of Information Science, Nagoya University

Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
E-mail: ogawa@create.human.nagoya-u.ac.jp, arita@nagoya-u.jp

Abstract
Evolution, learning and development are the three

main adaptive processes that enable living systems to
adapt to environments on different time scales. The
purpose of our study is to investigate the relationships
among evolution, learning and development, especially
in dynamic environments where there is no explicit op-
timal solution through generations, and the fitness of
an individual depends on the interactions in a pop-
ulation. To do this, we construct a computational
model using the iterated Prisoner’s Dilemma game
as dynamic environments. In the model, evolution
and learning is achieved by a genetic algorithm and
a Meta-Pavlov learning, respectively. Development
is handled by two alternative computation-universal
mechanisms: a tag system and a Turing machine. The
results showed that almost all experiments we con-
ducted finally established cooperation through evolu-
tion, learning and development, while there were var-
ious scenarios in which cooperative relationships were
established, corresponding to the flexibility in the re-
spective roles of them.

Keywords: development, genetic algorithm, tri-
lateral adptation, the iterated prisoner’s dilemma, ar-
tificial life.

1 Introduction

Evolution, learning and development are the three
main adaptive processes that enable living systems to
adapt to environments on different time scales. These
processes do not occur in isolation, and interactions
among them are very complex and not clearly un-
derstood in both biology and engineering. Combi-
nations of them have a long history in the fields of
artificial life, evolutionary computation, and engineer-
ing. Also, recently, interactions between evolution and
development, so-called “evo-devo” have attracted re-
searchers in both biology and artificial life. However,
very few models combine all these three adaptive pro-
cesses, among which Downing introduced a develop-
mental process into Hinton and Nowlan’s very simple

model in which environment was static and the opti-
mal solution was fixed, and focused on the evolution of
developmental process by analyzing the feature of the
genomes arising in the process of the Baldwin effect
[1].

The purpose of our study is to investigate the rela-
tionships among evolution, learning and development,
especially in dynamic environments where there is no
explicit optimal solution through generations, and the
fitness of an individual depends on the interactions in a
population. To do this, we have adopt a synthetic ap-
proach and construct a computational model using the
Iterated Prisoner’s Dilemma (IPD) game as dynamic
environments. In the model, evolution is achieved by a
genetic algorithm and learning is achieved by a simple
improvement algorithm termed Meta-Pavlov. Devel-
opment is a kind of mapping process from genotype
to phenotype, and is the least understood one of the
three. We focus on two computation-universal mech-
anisms for development: a tag system and a Turing
machine, and compare them with the results of the
experiments.

2 Model

We construct a computational model in which three
processes (evolution, learning and development) cre-
ate the strategies for the Iterated Prisoner’s Dilemma
(IPD) game (Figure 1). The IPD game is a simple
2-player non-zero-sum game, in each round of which
each player independently chooses an action from co-
operate (C) or defect (D) without knowing the other’s
choice, and obtains the score according to the payoff
matrix (Table 1). We adopt the framework proposed
by Downing [1], while we incorporate a tag system [4]
as an alternative mechanism for development, and in-
terpret the developed phenotypes as strategies for the
IPD game. The genotype encodes both a mechanism
performing a developmental process, which is either a
tag system or a Turing machine, and an initial tape on
which the mechanism runs. The final developed tape
as a phenotype is interpreted as a deterministic strat-

Figure 1: Evolution, development and learning in the
model.

Table 1: Payoff matrix for the Prisoner’s Dilemma
game.

XXXXXXXXXXplayer
opponent cooperate defect

cooperate (3, 3) (0, 5)
defect (5, 0) (1, 1)

(player’s score, opponent’s score)

egy of the IPD game. The action of the plastic pheno-
type is changed via a simple improvement algorithm
termed “Meta-Pavlov” [3] during a game. The average
score of each individual is regarded as a fitness value,
new population is generated by the roulette wheel se-
lection according to the scores, and then mutation is
performed on a bit-by-bit basis.

The essential point of the model is that the devel-
opmental process can determine not only the strate-
gies but also the possible amount of improvement by
learning during game play, and at the same time the
evolutionary process can determine this developmental
process (Figure 2). Individuals evolved in the model
are characterized in the space shown in this figure,
of which the horizontal axis represents the possible
amount of improvement by learning and the vertical
axis represents the level of the degree of dependence
on development. For example, evolution can generate
the individual (at the coordinate origin) that never
undergoes a developmental process, which means the
genotype-phenotype mapping is 1 to 1, and has no
learning ability, which means the phenotype has no

Figure 2: Individuals in the space of learnability and
developability.

plasticity.

2.1 Genotype

Each genotype has genotype-length bits, and is com-
posed of four fields: ratio, rule, intron, and tape. The
ratio field have 3t bits, which encodes three integers:
r1, r2 and r3, each representing the ratio in length of
the rules, the introns and the tapes, respectively. The
intron field just separates the rule and the tape field,
and is not used at all in subsequent development and
learning. The tape field is used as an initial tape on
which the developmental process runs.

In case of a tag system, the rule field encodes the
transition rules, each of which specifies the elements to
be removed from the beginning of a tape, and the ele-
ments to be appended onto the end of the tape. Each
transition rule requires (Pts+Qts)×nts bits, where Pts

and Qts are the numbers of removed and appended ele-
ments, respectively, and nts is the number of bits used
to encode these elements. The tape symbol encodes
an integer between 0 and 2nts − 1. These integers are
converted to 0, 1 or 2 with nearly equal probability.

In case of a Turing machine, the rule field encodes
transition rules as 5-tuples of the form (s, x, s∗, x∗, a),
in which s is the current state, x is the tape symbol
being read, s∗ is the next state, x∗ is the next symbol,
and a is the action, that is either overwriting x with x∗,
or inserting x∗ to the immediate right of x on the tape.
Each transition rule requires 2mtm + 2ntm + 1 bits,
where ntm and mtm are the numbers of bits used to

Figure 3: An example of development in case of a tag
system.

encode a tape symbol and a state, respectively. Each
element is expressed with 0, 1 or 2 as in the case of a
tag system.

2.2 Development

The phenotype is generated from both the transi-
tion rules for a tag system or a Turing system and an
initial tape into which developmental process decodes
the genotype.

Figure 3 shows an example of development in case
of a tag system. In general, the transition rules for
a tag system specify that a fixed number of elements
should be removed from the beginning of the sequence,
and depending on these elements, several number of
elements should be appended onto the end of the se-
quence. In the current model, both the number of the
elements removed and the number of the elements ap-
pended are fixed, and are 1 and 2 respectively. In the
example shown in Figure 3, first, 0 is removed from
the beginning of the tape, and then the rule corre-
sponding to 0 is retrieved from the transition rules.
Since 0 → 02 is included in the transition rules, 02 is
appended onto the end of the tape in this case. This
type of replacement process continues until the tape
size reaches L.

Figure 4 shows an example of development in case
of a Turing machine, which is the same as the one
adopted in [1]. The head always begins the develop-
mental process in state 0 at the left edge of the cell on
the tape. In this figure, the current state and the tape
symbol are s0 and 0, respectively, and then the rule
corresponding to (s0, 0) is retrieved from the transi-
tion rules. As (s0, 0) → (s0, 2, Insert) is included in
the transition rules, 2 is inserted to the immediate
right of 0 on the tape, and the head moves right one
cell. If the head reaches the right edge of the cell on
the tape, it is again set to the left edge of the cell
on the tape. This type of movement and replacement
process continues until either the tape size reaches L
or the number of the steps reaches max-devp-stepstm .

Figure 4: An example of development in case of a
Turing machine.

2.3 Phenotype

The final developed tape as a phenotype is inter-
preted as a deterministic strategy for the IPD game,
and it defines the next action according to the his-
tory of actions of both players, which is the same as in
Lindgren’s model [2] but is introduced plasticity as in
Suzuki’s model [3]. Each strategy is represented as a
string of 0’s (defect), 1’s (cooperate) and 2’s (plastic
action). “x” is used to express this plastic phenotype
in this paper.

A strategy S of memory m can be expressed by
associating an action Ak (0, 1 or 2) with each history
k as follows:

hm = (am−1, · · · , a1, a0)2, (1)

where a0 is the opponent’s previous action (0 and 1),
a1 is the previous player’s action. a2 is the opponent’s
next to previous action, and so on. S for a strategy of
memory m can be expressed by associating an action
Ak (0, 1 or 2) with each history k as follows:

S = [A0A1 · · ·An−1] (n = 2m). (2)

2.4 Learning and Evolution

A plastic phenotype can be changed by learning
based on Meta-Pavlov during a game. Each agent
changes its phenotypes according to the result of each
round by referring to the Meta-Pavlov learning matrix
(Table 2). It does not express a strategy but the way
to change its own strategy (phenotype) according to
the result of the current round, though this matrix is
the same as that of the Pavlov strategy. The learning
process is described as follows: At the beginning of the
game, the plastic phenotype is set randomly to either
0 or 1. If the phenotype used in the round is plastic,
the phenotype is changed to the corresponding value
in this matrix based on the result of the round. The

Table 2: Strategy matrix for Meta-Pavlov learning.

XXXXXXXXXXplayer
opponent cooperate defect

cooperate C D
defect D C

agent uses the new strategy specified by the changed
phenotype from the next round on.

We shall consider a population of N individuals in-
teracting according to the IPD. Each bit of gene is
set randomly in the initial population. The round
robin tournament is conducted among strategies un-
der the condition in which the performed actions could
be changed by noise with probability pn. Each plastic
phenotype is set randomly at the beginning of games.
Rounds are repeated with the probability pf , which
is decided at the end of each round. The tournament
is “ecological”: The average score of each individual
is regarded as a fitness value, a new population of in-
dividuals is generated by the roulette wheel selection
according to the scores, and mutation is performed on
a bit-by-bit basis with the probability pm.

3 Evolutionary Experiments

We conducted 20 trials for 10000 generations in
each of the experiment with the tag system and that
with the Turing machine, focusing on the strategies of
memory 4 (m = 4). The other parameters were as fol-
lows: genotype-length = 300, N = 1000, pm = 1/5000,
pn = 1/25, pf = 0.995, t = 5, Pts = 1, Qts = 2, nts =
5, L = 16, mtm = 3, ntm = 5, max-devp-steptm = 100.

First of all, we have found that cooperation was
finally established through evolution, learning and de-
velopment in most of the trials we conducted, while
there were various scenarios in which cooperative re-
lationships were established, corresponding to the flex-
ibility in the respective roles of them. The last gener-
ation in each trial was classified into the following five
types: XX, XL, DX, DL and US as shown in Table
3, in which D represents strong dependency on devel-
opment, L represents strong dependency on learning,
X represents weak dependency and US represents the
gray type owing to instability in the boundary areas.
For example, XX represents that the average individ-
ual depended neither on development nor on learn-
ing, and DL represents that the average individual de-
pended both on development and on learning. Depen-
dency on development (D-dependent) was decided in
case that the average times of rule application in devel-

Table 3: Classification of the results by dependence on
development or learning.

Tag
system

Turing
machine

stable
D-independent

L-independent XX 0 3
L-dependent XL 1 7

D-dependent
L-independent DX 2 9
L-dependent DL 15 1

unstable US 2 0

opment was more than 5, and dependency on learning
(L-dependent) was decided in case that the average
ratio of plastic phenotypes chosen during game play
was more than 0.5, in the last generation. The aver-
age score was kept around 2.4 in the last generation
in almost all trials in L-demendent case (XL and DL),
while DX trials varied in the score from trial to trial,
and achieved the highest score, 2.6.

Classification

From this table, we see that 15 trials of 20 trials
were DL in case of the tag system. This means that the
tag system tended to work efficiently to help evolution
explore the cooperative roles of learning and develop-
ment in dynamic environments, in other words, three
adaptive processes evolved the individuals depending
on both learning and development, which could result
in the smooth establishment of cooperative relation-
ships.

Figure 5 shows an evolutionary transition of the
average score, dependency on learning and depen-
dency on development in a typical trial of DL. De-
pendency on learning and dependency on develop-
ment were calculated as the average ratio of “2”s in
all of the developed expressions (which is different
from the definition of L-dependent) and the number
of times of applying rules (in development) divided by
50, respectively. The dashed line shows the thresh-
old that separates D-dependent and D-independent.
The evolutionary scenario in this figure is summa-
rized as follows: Defect strategy spread until around
the 50th generation, which decreased the score (which
is difficult to see from this figure). Simultaneously,
partially plastic strategies (e.g. [0xxx0x0x0x0x010x])
spread in the population. Then, fully plastic strate-
gies (e.g. [xxxxxx0xxxxxxxxx]) occupied the popula-
tion, which increased the plasticity and the average
score. Around the 1300th generation, some strategies
(e.g. [xx0x000x0x0000xx]) spread, which decreased
the plasticity, but around the 1600th generation, the
plasticity increased again. Finally, some robust strate-
gies (e.g. [x00x000x000x000x]) occupied the popula-
tion. The number of times of applying developmental

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
 0

 0.5

 1

 1.5

 2

 2.5

 3

Generation

Dependency Average score

Average score

[xxxxxx0xxxxxxxxx]

[xx0x000x0x0000xx]

[xxxx0x0x0xxx0xxx] [x00x000x000x000x]

Dependency on learning

Dependency on development

Figure 5: An experimental result (tag system).

rules was around 8 throughout the generations.

11 trials of 15 DL trials showed the similar evo-
lutionary scenario to the above described one, while
4 trials had other scenarios like the one, for exam-
ple, in which dependency on learning did not reach
such a high value and some robust strategies like
[x00x0xx00xx0x00x] evolved to occupy the population
while keeping the average score high.

As for the cases of the Turing machine, we see from
this table that 16 trials of 20 trials were classified into
XL or DX, which means that either learning or de-
velopment tended to work exclusively to build coop-
erative relationships. The possible cause of this is the
flexibility in the complementary roles of learning and
development in evolution of cooperation. Just 2 tri-
als of the 9 DX were the special case in which co-
operative relationships could not be established since
defect-oriented strategies continued to occupy the pop-
ulation.

A typical case of XL is summarized as follows:
D-dependent defect strategies spread in the popu-
lation in initial phase. However, dependency on
learning did not increase and the strategies like
[x00x00x00x00001x] finally evolved with the average
score converging to about 2.4 and with dependency
on learning hovering around 0.4. Figure 6 shows
a transition in a typical trial of DX. Firstly, D-
dependent defect strategies (e.g. [0000000100000000])
grew in the population, which decreased the av-
erage score until around the 1300th generation.
But then, “Tit-for-Tat”-like non-plastic strategies
(e.g. [0101010101010101]) spread in the population,
which increased the average score sharply. Finally,
some cooperative strategies without plasticity (e.g.
[110x000000000001]) occupied the population, so that
average score converged to about 2.6.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
 0

 0.5

 1

 1.5

 2

 2.5

 3
Dependency Average score

Generation

Average score

 [0000000100000000]

 [0101010101010101]

Dependency on development

Dependency on learning

Figure 6: An experimental result (Turing machine).

4 Conclusion

We have constructed a computational model using
the iterated Prisoner’s Dilemma game as dynamic en-
vironments in order to investigate the relationships
among evolution, learning and development. Devel-
opment is handled by two alternative computation-
universal mechanisms: a tag system and a Turing
machine in the model. The evolutionary experiments
have shown that when adopting a tag system, each in-
dividual tended to depend on both learning and devel-
opment, which often resulted in the smooth establish-
ment of cooperative relationships. While, when adopt-
ing a Turing machine, either development or learning
worked exclusively and built cooperative relationships.
These results show the flexibility in the roles of learn-
ing and development in establishment of cooperation.
Differences between the results of the two developmen-
tal mechanisms could possibly be due to the fact that
the tag system could work more efficiently to help evo-
lution explore cooperative roles of learning and devel-
opment in dynamic environments.

References

[1] Downing, K. L.: Development and the Baldwin
Effect, Artificial Life, Vol. 10, No. 1, pp. 39–63,
2004.

[2] Lindgren, K.: Evolutionary Phenomena in Simple
Dynamics, Artificial Life II, pp. 295–311, 1991.

[3] Suzuki, R. and Arita, T.: Interactions between
Learning and Evolution: The Outstanding Strat-
egy Generated by the Baldwin Effect, Biosystems,
Vol. 77, Issues 1–3, pp. 57-71, 2004.

[4] Wolfram, S.: A New Kind of Science, Wolfram
Media, pp. 93–96, 894–895, 2002.

