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Abstract
Recently, a new constructive approach characterized

by the use of computational models for simulating the
evolution of language has emerged. This paper inves-
tigates the interaction between the two adaptation pro-
cesses in different time scales, evolution and learning of
language, by using a computational model. Simulation
results show that the fitness increases rapidly and re-
mains at a high level, while the phenotypic plasticity in-
creases together with the fitness but then decreases and
gradually converges to a medium value. This is regarded
as the two-step transition of the so-called Baldwin effect.
We investigate the evolutionary dynamics governing the
effect.

Keywords: language evolution, Baldwin effect, ge-
netic algorithm, recurrent neural network, artificial life.

1 Introduction

Humans are the only species that has evolved sophisti-
cated language. For hundreds of years, many researchers
have investigated why and how it could be possible. Re-
cently, a new constructive approach characterized by the
use of computational models for simulating the evolu-
tion of language has emerged. Language is an emergent
system that has been created and maintained through
language faculty evolution in a long time scale and cul-
tural change in a short time scale, and thus these models
treat either biological evolution or cultural evolution of
language. The most obvious purpose of language is to
communicate information. If we use natural selection to
explain the evolution of language faculty, an individual
carrying a “beneficial” grammatical mutation must have
a higher fitness. However, how could the mutation be
beneficial, if all the other less-evolved individuals in the
population could not have understood her [1]. Therefore,
it is a very plausible idea that learning combined with
evolution played a crucial role in the evolution of lan-
guage. We focus on the interaction between these two
adaptation processes driving the evolution of language
in different time scales by using a computational model
based on the constructive approach.

The Baldwin effect, which is the focus of this paper,
explains the interaction between evolution and learning
in general by paying attention to balances between ben-
efit and cost of learning through the two steps [2]. In
the first step, life time learning gives individual agents
chances to change their phenotypes. If the learned traits
are useful for agents and make their fitness increase, they

will spread in the next population. The learning behavior
acts as a benefit in this step. In the second step, if the
environment is sufficiently stable, the evolutionary path
finds innate traits that can replace learned traits (genetic
assimilation), because of the cost of learning. Through
these steps, learning can accelerate the genetic acquisi-
tion of learned traits without the Lamarckian mechanism,
which has been clearly demonstrated with a variety of
models [3]. When analyzing the interaction between evo-
lution and learning, one of the most important aspects
is the cost of learning, because the second step of the
Baldwin effect can not occur, if learning is ideal, in other
words, there is no cost at all arising from the learning
process.

We adopt a speaker-hearer model proposed by Batali
[4], in which each agent used a simple recurrent neural
network and structured utterance, in other words, par-
tially compositional communication could be obtained by
learning from each other. We use the model in a com-
bined framework of cultural learning and genetic evolu-
tion. Adopted cultural learning is an extended version
of Iterated Learning proposed by Kirby and Hurford [5],
which is based on vertical (oblique) communication from
adults to children and horizontal communication between
adults. Evolution of the weights in the neural network
is achieved by a genetic algorithm. In order to examine
whether and how the Baldwin effect might occur, we use
a mechanism for the evolution of the plasticity (learn-
ability) of each weight in the neural network as we did in
[6].

2 Model

A conceptual overview of the model is shown in Fig-
ure 1. There are two types of communication: vertical
(oblique) communication which is unidirectional trans-
mission from adults to children and horizontal communi-
cation which is bidirectional transmission between adults
(Figure 2). In the first stage, each child agent learns to
interpret the characters produced by a biological parent
and randomly-selected cultural parents in each commu-
nicative episode. In the second stage, a communicative
episode is repeated between a pair of grown-up agents of
their generation in which each agent alternates between
learning to interpret sequences of the characters produced
by other agents and producing sequences of characters.
Then, the next generation is produced based on the fit-
ness of agents based on their communicative accuracy
in the first and second stages. In the third stage, each
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Figure 1: Overview of our model.
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Figure 2: Two types of communication.

agent as a parent just produces sequences of characters
for their biological and cultural children as their parents
do for them in the first stage.

There are two forms of linguistic representation in
this model: 1) I-language: Internal language as pat-
terns of connection weights in the neural network, 2)
E-language: External language as sequences of uttered
characters. Linguistic information in I-language can be
inherited from a generation to the next generation via
the following two ways: 1) genetic inheritance: initial
connection weights of the agents are transmitted to their
children through evolutionary operations (Lamarckian
inheritance is not adopted), 2) cultural inheritance: E-
language is produced from I-language through use and
is transmitted to the I-language of the next generation
through learning (vertical communication).

Each agent uses a simple recurrent neural network (El-
man network) consisting of three layers of neurons (4
character input units each of which corresponds to each
of 4 character (a, b, c, or d) and 30 context input units,
30 hidden units and 10 output units). A communicative
episode is illustrated in Figure 3. Agents produce se-
quences of characters to encode structural patterns (vec-
tors) each of which stores 10 real values between 0 and
1. The values in the patterns are partitioned into two
groups: the left four of the values are taken as encod-
ing a subject and the right six of the values are taken
as encoding a predicate. There are 5 patterns each for
the subjects and predicates, and therefore 25 different
patterns.

In the beginning of each communicative episode, a sub-
ject and a predicate are randomly selected. In order to
choose which character to send at each point in a se-
quence, the speaker agent determines which of the four
characters would bring its own output pattern closest to
the structural pattern being conveyed. She stops sending
if all the speaker’s output units are correct for the struc-
tural pattern. If the sequence of characters which the
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Figure 3: A communicative episode.

agent produces does not reach a limit length of ten char-
acters, the agent succeeds in producing the sequence of
characters. The hearer agent then processes the sequence
of characters sent by the speaker, and produces an output
pattern. The back-propagation algorithm is conducted to
modify the weights of the network using the difference be-
tween the speaker’s and the hearer’s structural patterns.
The network is trained until it converges.

Biological evolution is achieved by a genetic algorithm
as follows. Each agent has a pair of chromosomes contain-
ing the same number of genes initially assigned to ran-
dom values. Each gene in the chromosome GW encodes
the initial connection weight in the neural network, and
each gene in the chromosome GP represents whether the
corresponding connection weight in the neural network is
plastic (“1”) or not (“0”). If a gene of GP is 0, the corre-
sponding connection weight is invariable in the lifetime.
GW consists of a real value within the range [−1.0; 1.0].
Agents obtain a reward when they correctly interpret a
sequence of characters or when they successfully produce
a sequence of characters in a communicative episode re-
gardless of the hearer’s success. Total rewards when the
second stage is completed are used as their fitness val-
ues. A new population is generated by the tournament
selection, and then a mutation is applied with a prespec-
ified probability. A mutation in GW changes the current
value into a randomly generated value within the range
[−1.0; 1.0] and a mutation in GP flips the current binary
value.

3 Experiments

We conducted an experiment for 140 generations. The
following parameters were used: N (number of agents) =
100, Np (number of parents) = 5, r (reward) = 1, m
(mutation probability) = 0.01, s (tournament size) = 2,
Lv (number of learning iterations for vertical communi-
cation) = 990000, Lh (number of learning iterations for
horizontal communication) = 1485000. The initial pop-
ulation was generated on condition that initial values in
GW were taken at random within the range [−1.0; 1.0]
and the proportion of “1” in GP for each agent was uni-
formly distributed within the range [0.05; 0.95] at inter-
vals of 0.05.

Figure 4 shows the transitions of the fitness that is the
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Figure 4: Fitness and plasticity of population.
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Figure 5: Linguistic coherence among the same genera-
tion.

average reward of a agent per communicative episode and
the “plasticity of population” which is the ratio of “1” in
all GPs of the population. We see that the fitness in-
creased rapidly during the first several generations and
kept high afterward, which means the agents have devel-
oped an accurate communication system through evolu-
tion and learning. Plasticity increased together with the
fitness, but then decreased and gradually converged to
some medium value (genetic assimilation). This is a typ-
ical two-step evolution caused by the Baldwin effect, a
key concept clarifying the interaction between evolution
and learning.

Figure 5 shows the transitions of the coherence at the
beginning or end of each stage. Coherence is the average
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Figure 6: Linguistic coherence among two successive gen-
erations.
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Figure 7: Correlation diagram of fitness and plasticity of
population.

ratio of agents uttering the majority sequence for every
possible structural pattern. The coherence both after the
first and second stages increased rapidly and remained at
a high level around 0.85. Also, the coherence before the
first stage (innate coherence) moved from 0.1 to 0.2 in the
first step. The difference in coherence between before the
second stage and the third stage is supposed to mean the
diversity amplified by the selected cultural parents in the
first stage. Figure 6 shows that the coherence among two
successive generations tends to increase while it shows a
chaotic oscillation.

Table 1: A part of the characters shared most in the
140th generation. In most of the sequences, we observed
that subjects correspond to suffixes (bold font) and pred-
icates correspond to prefixes (underline).

subjects and predicates 1000 1011 0101
011100 bbd bbc bd
101001 aa ac ad
100011 ca cc cd

Table 1 shows a part of the sequences used by a ma-
jority of the population in the 140th generation. The
agents in the 140th last generation tended to share a little
shorter sequences than previous generations. Also, syn-
tactic regularities in the order of token sequence tended
to be observed more clearly.

Here, we investigate the evolutionary dynamics which
governs the Baldwin effect. The agents in the first gen-
eration varies greatly both in the amount of the plastic
phenotypes and the connection weights of the network.
Agents with more plastic connections could communicate
with others successfully in this situation and therefore
could occupy the population within several generations.
Figure 7 shows the correlation between plasticity and fit-
ness in the 1st generation. This also supports the scenario
that the plasticity drives the evolution in this step.

In the second step, plasticity gradually decreased to
about 0.55 around the 140th generation while keeping
the fitness high. This shows a dramatic change between
the both steps in the necessity of the plasticity caused by
the change in genetic organization. We conducted sev-
eral additional experiments in order to clarify the factors
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Figure 8: The distribution of the proportion of the plastic
connection weights in each locus.

driving the evolution in the second step. As a result, the
following factors drastically decreased the selection pres-
sure for the evolution of plasticity compared with the
evolution of the connection weights, and thus it gradu-
ally decreased to 0.55 by a random drift in the second
step.

The first factor is the decrease in the necessity of learn-
ing caused by a linguistic shift towards easier language.
The variation in the initial connection weights decreased
rapidly in the first stage, which made the learning in the
second stage easier because the language that should be
learned and shared among agents became nearer to the
innate language of each agent. The fact that the varia-
tion in the plasticity in the population decreased rapidly
in the first stage also decreases the selection pressure for
plasticity. We see that the coherence was about 0.1 in
the first generation while it was 0.2 in the generations of
the second step, which supports this explanation.

There is another language-specific factor. Figure 8
shows the distribution of the proportion of the plastic
connection weights in each locus. It is shown that the
architecture of the network (the location of the plastic
connection weights) evolved to be identical. Also, there
is a possibility that regularization and compactification
in the uttered sequences played a role to become easier
for agents to acquire. The fact that the coherence among
two successive generations tended to keep high afterward
is supposed to show this possibility. These factors are
specific to language evolution and seem parallel with the
idea by Deacon that language evolves to be adaptive to
human cognitive capacity [7].

The second factor is implicit cost associated with
learning. In our experiments, there is no explicit learning
cost in learning such as fitness tax which is proportional
to the learning period. Also, the length of each commu-
nicative episode seems enough for learning to converge,
which is supported by the result of the experiment (not
shown) in which the length of the episode was doubled.
However, the interactions among weights or genetic epis-
tasis based on abundant plasticity could cause the bad
effect in the back-propagation learning, leading to the
decrease in the reward. In this sense, phenotypic plastic-
ity evolves under such selection pressure [6]. This type of
cost becomes larger, as the necessity of learning decreases
through the phase of evolution. Note that epistasis could
have an opposite function to repress genetic assimilation

by making the relationship between genotype and phe-
notype less correlated [8].

Another aspect of implicit cost, which is purely spe-
cific to linguistic evolution, is related with the variation
in parents. In the first stage, each child learns sequences
uttered from the biological and randomly selected cul-
tural parents. Overlearning to the parents with new lo-
cal dialect owing to mutation could cause a decrease in
rewards both in vertical communication and succeeding
horizontal communication.

4 Conclusion

This paper investigates the interaction between evolu-
tion and learning of language by using a computational
model which we believe to be a minimal model to capture
the essence of it. We have found that the factors spe-
cific to language evolution or linguistic behavior might
have a crucial role in shaping its evolutionary pathways.
Specifically, it has been shown that the second step in
the Baldwin effect (genetic assimilation) could be driven
by the random drift caused indirectly by the adaptive
shift in language or overlearning to a variety of parents.
It should be noted that genetic assimilation in this evo-
lutionary scenario does not necessarily need unchanged
linguistic environment.
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