
An evolutionary model for 3D agents integrating continuous and plastic development

Artur Matos Takaya Arita
Graduate School of Human Informatics Graduate School of Information Science

Nagoya University Nagoya University
Nagoya, 464-8601, Japan Nagoya, 464-8601, Japan

Abstract

Most of the current research in generative encod-
ings for artificial creatures has only focused on the fi-
nal matured genotypes, and doesn’t take into account
the developmental process itself. In this paper, we
introduce a grammar based approach for generating
agents with both 3D morphology and neural networks
that leads to more natural developmental processes
than previous approaches. This new model is based
on Lindenmayer systems, but with added extensions
for dealing with continuous development of limbs, and
for simulating chemical interactions between develop-
ment and the surrounding environment. This paper
includes a detailed description of the model, as well as
some results of our preliminary experiments for evolv-
ing agents that exhibit walking or other similar behav-
iors.

1 Introduction

Since Karl Sims’ seminal work [5] on virtual crea-
tures, significant research has been done for evolving
agents with both integrated 3D morphology and neu-
ral systems. Most of the research currently being done
in the field has been focusing on generative encod-
ings, where the genotype is interpreted as instructions
for building the phenotype, instead of directly map-
ping traits to it. Regarding these generative encod-
ings, two distinct approaches can be observed in the
current literature: the first one uses formal grammars
or high-level structures for representing developmental
processes (grammar based approaches), for example,
Lindenmayer systems (LSystems). On the other hand,
cell chemistry approaches attempt to simulate the low
level interactions between cells during development,
for instance, gene regulation and targeting. Although
at a first glance these two approaches appear to be
distinct and even opposite to each other, this division
is largely artificial, and it should be possible to incor-
porate concepts from one approach to the other. So

in this paper, we present a developmental system that
although being grounded on developmental grammars,
attempts to bridge between these two approaches, by
introducing concepts that can easily be modeled on
cell chemistry systems but that are usually not found
in the grammar based ones. This new model, based
on a previous one by Hornby and Pollack [1], inte-
grates two different LSystems: Differential LSystems
(Prusinkiewicz, Hammel and Mjolsness [4]) for mod-
eling continuous processes, for instance, elongation of
limbs; And Open LSystems (Mech and Prusinkiewicz
[2]), for simulating chemical interactions between the
developmental process and the environment.

2 The 3D agents and the environment

The agents in our model have both a 3D morphol-
ogy and a simulated nervous system to control it. The
3D morphology for each agent is made of rectangu-
lar parallelepipeds connected by hinge joints, that re-
strict the movement of the connecting parts in one
degree of freedom. The nervous system actuates on
the joints by changing the speed of actuating motors
present on each joint. The nervous system is a sim-
ple free form neural network, and includes sensors for
the environment and joint positions, processing nodes
and actuators for the joints. The processing nodes in-
clude sigmoids, linear transfer functions and sinusoid
oscillators. The nodes in the neural network use stan-
dard propagation functions on the incoming connec-
tions, that is, the weighted sum of all the connections
values, and are constantly active (no activation func-
tion is considered). For the sinusoid oscillator, the
computed weighted sum of the incoming connections
works as frequency modulator for the sinusoid, map-
ping the frequency in the interval [0, 2π].

The environment simulates all physical interactions,
including gravity and collision with objects. A flat
ground is also simulated, extending indefinitely in the
XZ plane. The simulation may include other objects



depending on the behavior that is being evolved.

3 The developmental process

Each step for the developmental process is repre-
sented by a sequence of commands indicating the mor-
phology and neural system for the agent. The com-
mands themselves are changed by the LSystem asso-
ciated with each agent through developmental time.
The commands used are similar to the ones by Hornby
and Pollack [1], but extended for allowing continuous
values, in order to use differential Lindenmayer Sys-
tems. The developmental commands for the morphol-
ogy work as a turtle constructor, and they include:
forward(n) for moving the turtle forward n units in
the currently defined direction, creating a new stick,
and connecting it to the previous existing one by a
joint; backward() for moving the turtle cursor back to
the parent stick; right(n), up(n), clockwise(n) for al-
lowing to control the direction of the turtle, rotating
in the specified direction n units, with 1 corresponding
to π

2 . Negative values can also be used for moving in
the opposite direction. Finally, revolute-1(), revolute-
2(), twist-90() and twist-180() change the kind of joint
to be created between two successive forward com-
mands. The revolute commands create joints over the
current turtle’s Z axis, with hinge stops between [0,
π
2 ] for revolute-1(), and [−π

2 , π
2 ] for revolute-1(), and

revolute-2(), respectively. The twist commands work
in a similar way, but for the X axis. The developmen-
tal commands for the nervous system work as edge
encoding commands, and they are described in table
1. There are also stack commands (push() and pop()),
for pushing a retrieving the current state of the turtle
and neural constructor, allowing to create branched
morphologies.

3.1 Representing continuous develop-
ment

DLSystems are based on parametric Lindenmayer
systems, but they add a differential component for
modeling continuous changes. Due to space con-
straints, parametric LSystems themselves will not be
explained here and we will focus on dLSystems in-
stead. For a good introduction to LSystems, the
reader is referred to to Prusinkiewicz and Lindenmayer
[3].

The first major difference concerning dLSystems is
that development doesn’t occur in discrete steps, in-
stead there is a continuous developmental time frame
t. As in PLSystems, the development is iterative, but

it progresses by an user specified time step, ∆t. This
time step is completely detached from the underlying
model, so it is possible to use a different ∆t in order to
observe the developmental process with more or less
detail, as desired.

For specifying the changes occurring as t progresses
through the developmental space, two different kinds
of successors are used. Continuous changes are spec-
ified by using differential equations, that relate the
changes in parameters’ values to the step ∆t. Struc-
tural changes, or adding new limbs or nodes to the
agent are specified by sequence of tokens, as in PLSys-
tems. Discrete transitions are applied on the same
way as in PLSystems, the token being replaced by the
matched sequence. Depending on the time step ∆T ,
the LSystem interpreter may need to subdivide the in-
terval for taking into account both continuous and dis-
crete transitions. An example dLSystem can be seen
in figure 1. In this example system, for ∆T = 1, the
following sequence, starting from ω would be derived:
B(1), A(0, 0) ; B(2), A(2, 1) ; B(3), B(4), C(2). A
smaller ∆t (for instance 0.5), would yieldB(1), A(0, 0);
B(1.5), A(1, 0.5), B(2), A(2, 1).

ω : B(1)A(0, 0)
B(x) : x < 4 → solve dx

dt = 1 (1)
x >= 4 → A(2, 2), B(1) (2)

A(x, y) : y < 2 → solve dx
dt = 2 (3)

solve dy
dt = 1

y >= 2 → B(x), C(2) (4)

Figure 1: An example dLSystem

3.2 Evolving dLSystems

Currently, our model uses a standard Genetic Algo-
rithm for evolving dLSystems that exhibit specific be-
haviors, for instance, walking or jumping. Each agent
is created from a random Lindenmayer System as de-
scribed before, undergoes the developmental process,
and then it is evaluated for the task at hand. Each
genotype contains a starting axiom and an LSystem,
both constrained in order to exhibit only viable growth
processes. This is assured both by the random gener-
ation process and by the GA operators.

In order to model continuous development there are
two different sets of commands present in the sys-
tem. The first set, corresponding to the commands
explained before, are used for modeling already sta-



ble processes. Another set of commands mirrors ex-
actly the same functionality, but are used for modeling
maturing processes that are still changing in devel-
opmental time. This maturing set of commands has
the same name as their matured counterpart, prefixed
by an “m”. This separation is needed most of the
times for modeling growing phenomena by using Lin-
denmayer Systems as pointed out by Prusinkiewicz,
Hammel and Mjolsness [4].

For assuring continuity, the generated rules are al-
ways instances of the same template, working as fol-
lows: if matched, a maturing command grows linearly,
until it reaches a certain threshold. After this thresh-
old has been reached, the token is replaced by its ma-
tured counterpart, possibly with some more additional
tokens added. Only linear differential equations are
used. Additional constraints may be present depend-
ing on the command. An example rule for the mfor-
ward(a) command can be seen in figure 2.

mforward(x) : x < 2 → solve dx
dt = 1

x >= 2 → forward(a), push(),
right(−1),
mforward(0)

Figure 2: An example branching pattern

In addition to this, each genotype also maintains a
set of control tokens, that can be used for controlling
development at a higher level. These set of control
tokens (starting alphabetically from A) are not used
by the morphology or neural system constructor, but
they can be used for generating higher level rules of
development. The rules, if generated, follow the same
template as described before.

Random genotypes are first created by generating
random rules and successors. Mutations occur by re-
placing tokens in discrete successors by random ones,
by changing conditions values, tokens in the starting
axiom, or by adding or deleting new rules. Crossover
occurs by choosing a token from all the available com-
mands at random, and by exchanging rules alphabet-
ically on that point.

3.3 Interactions with the environment

We also added plasticity to this developmental
model by using another LSystem extension, Open
LSystems (Mech and Prusinkiewicz [2]). This exten-
sion simulates chemical inflows and outflows with the

surrounding environment, allowing the developmental
process to both affect or be influenced by the surround-
ing environment. For this, we extended our current
model for the environment by adding an unary array
for representing chemical concentrations, that can be
read and changed both by the developmental process
and by the neural controller of the matured phenotype.

Summarily, OLSystems exchange information with
the environment by using special tokens called envi-
ronmental symbols, that are processed after each de-
velopmental step takes place. In our current model,
these are of the form ?E(x, y, z), where x stands for the
kind of command used (0 for setting a chemical con-
centration in the environment, 1 for setting a value), y
for a index in the chemical concentration array, and z
for the concentration value, if in set mode. After each
LSystem iteration, any generated environmental sym-
bols are processed in sequence, and allowed to change
and retrieve the values in the environment. For any
commands of the form ?E(1, y, z), the system replaces
z with the value present in the environment at that
time, in order to allow the productions to access that
value on the next iteration. By using these commands
as left or right context in rules, it is possible to trigger
different developmental paths depending on the sur-
rounding environment.

4 Preliminary experiments

Currently, the above described system has been
used for evolving developmental processes for inter-
acting tasks, like walking or jumping. One example
of an evolved creature can be seen in figure 3. The
fitness function used was the distance moved by the
agents in the XZ plane. The developmental process,
as can be seen from a) to c), works by generating two
linear branches. The final evolved creature behaves
like a snake, coiling itself in the ground. The system
is implemented in Java, using Open Dynamics Engine
for simulating physics and collisions. The renderings
are done by using Art of Illusion (a free modeler and
animation tool).

Other experiments are being planed and conducted
for studying developmental plasticity in the imple-
mented model, modeling of developmental interac-
tions between predator and preys (cyclomorphosis)
and canalization.



Command Description

offset-weight(n) Adds or subtracts n to the weight of
the current link

duplicate(n) Duplicates the current link

loop(n) Creates a self connecting link from
the current head neuron

merge(n) Replaces the current link and con-
necting neurons with the head neu-
ron. All connections from both neu-
rons are copied into this neuron.

next(n) Changes the head neuron to its nth
sibling if it exists

parent(n) Changes the head neuron to its nth
parent, if it exists

output(n) Creates a new output neuron, con-
nected to the current joint. Creates
a link from this new neuron to the
previous head neuron.

reverse() Reverses the current connection

split(n) Creates a new sigmoid neuron, cre-
ates a connection from the current
head to this new neuron, and from
the new neuron to the current tail.
Sets the current connection to the
new one.

setNodeType(n) Changes the node type of the cur-
rent neuron. 0 → linear, 1 → sig-
moid, 2 → oscillator

cut Removes the current connection

Table 1: Commands for behavior

5 Conclusion

In this paper, we introduced a new developmental
model that attempts to bridge between the two main
approaches previously found in the literature. It is our
hope that this model will demonstrate the advantages
of both approaches, and will allow to model develop-
mental processes more naturally in simulations. The
added Open LSystems component should be impor-
tant for studying developmental plasticity and other
issues related with development, and hopefully this
should be clear with future experiments.

Acknowledgments

This research is funded with a Japanese MEXT
scholarship (400000357010989).

Figure 3: Development and interaction for a sample
creature. a) to c) development seen from above for
t = 0.54, t = 0.99 and t = 2.33, respectively. d) to f)
The same creature, after development, interacting in
the environment.

References

[1] Hornby G. and Pollack J. Creating high level com-
ponents with a generative representation for body-
brain evolution. Artificial Life, 8:223–246, 2002.

[2] Radomir Mech and Przemyslaw Prusinkiewicz. Vi-
sual models of plants interacting with their envi-
ronment. In Proceedings of SIGGRAPH 96, pages
397–410. ACM SIGGRAPH, 1996.

[3] Prezemyslaw Prusinkiewicz and Aristid Linden-
mayer. The algorithmic beauty of plants. Springer
Verlag, 1996.

[4] Przemyslaw Prusinkiewicz, Mark Hammel, and
Eric Mjolsness. Animation of plant development.
In Proceedings of SIGGRAPH 93, pages 351–360.
ACM SIGGRAPH, 1993.

[5] Karl Sims. Evolving virtual creatures. In Siggraph
’94 Proceedings, pages 15–22. ACM SIGGRAPH,
1994.


