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Abstract Optimization inspired by cooperative food re- 
trieval in ants has been unexpectedly successful and has 
been known as ant colony optimization (ACO) in recent 
years. One of the most important factors to improve the 
performance of the ACO algorithms is the complex trade- 
off between intensification and diversification. This article 
investigates the effects of controlling the diversity by adopt- 
ing a simple mechanism for random selection in ACO. The 
results of computer experiments have shown that it can 
generate better solutions stably for the traveling salesmen 
problem than ASrank which is known as one of the newest 
and best ACO algorithms by utilizing two types of diversity. 

Key words Ant colony optimization �9 Diversity �9 Diver- 
sification �9 Intensification �9 Pheromone communication 

1 Introduction 

Ant colony optimization (ACO) l'z is a new search metaphor 
for solving combinatorial optimization problems, and has 
been unexpectedly successful in recent years. It has been 
applied to many combinatorial optimization problems, 
e.g., traveling salesman problems (TSP), network routing 
problems, graph coloring problems, quadratic assignment 
problems, and others. ACO is currently the best available 
meta-heuristic for some problems, and is among the most 
competitive approaches for the other problems, 3'4 while sev- 
eral such heuristic algorithms have been proposed which 
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include algorithms like simulated annealing, tabu search, 
genetic algorithms, and artificial neural network. 

In general, one of the most important themes in the 
study of heuristic algorithms is the balance between inten- 
sification and diversification. Too much emphasis on the 
former can make agents converge to a local optimum and 
too much emphasis on the latter can cause an unstable state, 
although these two factors are essential because we need 
the former to accelerate convergence and the latter to find 
better solutions. 

This article investigates the effects of explicitly control- 
ling the diversity so as to adjust the trade-off between 
intensification and diversification by adopting a simple 
mechanism for random selection in ACO. Sect. 2 explains 
the ACO algorithms. Sect. 3 briefly surveys the ACO re- 
search in terms of the balance between intensification and 
diversification, and describes our idea on diversity control 
in ACO.  Sect. 4 reports the results of the computer experi- 
ments applied to the traveling salesman problem, and 
analyzes the interaction between two types of diversity 
underlying in the ACO framework based on the results. 
Sect. 5 summarizes the paper. 

2 Ant colony optimization 

Recently, computer scientists have been able to transform 
models of social insect collective behavior into useful opti- 
mization and control algorithms. A new line of research 
focuses on the transformation of knowledge from how 
social insects collectively solve problems into artificial 
problem-solving techniques, producing a form of artificial 
intelligence, or swarm intellingence. 3'5 In particular, optimi- 
zation algorithms inspired by models of cooperative food 
retrieval in ants have been unexpectedly successful and 
have become known as ACO. 

The essential framework of the ACO is to parallelize 
searches over several constructive computational threads, 
based on a memory structure incorporating the information 
about the effectiveness of previously obtained fragments 



of solutions. This structure is maintained dynamically by 
deposition, evaporation, and detection of conceptual phero- 
mone. These processes realize pheromone-based indirect 
and asynchronous communication among ants mediated by 
an environment, and form a positive feedback where effec- 
tive fragments of solutions will receive a greater amount of 
pheromone and in turn a larger number of ants will choose 
the fragments of solutions and deposit pheromone. 

The first ACO algorithm, called Ant System (AS), was 
initially proposed by Dorigo et al. 6 and applied to the well- 
known traveling salesman problem (TSP) as a benchmark 
problem. As has been the prototype of many following 
ACO algorithms with which many other combinatorial 
problems can be successfully solved. 

In TSP a given set of n cities has to be traversed so that 
every city is visited exactly once and the tour ends in the 
initial city. The optimization goal is to find a shortest pos- 
sible tour. Let dq be the distance between city i and cityj and 
Tq the amount of pheromone in the edge that connects i 
and j. 

Each of m ants decides independently on the city to be 
visited next based on the intensity of the pheromone trail xq 
and a heuristic value qq, until the tour is completed, where 
the heuristic value ~lq = 1/dq is generally used. Each ant 
maintains a list Nf of cities that remain to be visited. An ant 
located at city i selects an edge between city i and city j 
according to the probability: 

p~(t) = [Tij(t)]a(I]iJ)~ 
(,1,) 

where the parameters a and 

Vj c N/k, (1) 

determine the relative 
influence of pheromone and distance, respectively. After 
every ant completes a tour, pheromone is deposited: 

A,~(t) = {Q/Lk(t) if (i,j)~ T~(t) , 
if(i,j)~Tk(t), (2) 

where Q is a constant, Lk(t) is the length of the tour gener- 
ated by the ant k at iteration t and ~( t )  is the set of edges 
constituting it. In this manner, the shorter a tour that an 
edge constitutes, the more pheromone is laid on the edge. 
The amount of pheromone is updated according to the rule: 

re/ 
�9 q(t + 1) = pxq(t) + Z Axe(t), (3) 

where p (0 < p < 1) represents the persistence of phero- 
mone trails (1 - p means the evaporation rate). These 
processes are repeated a predefined number of times tmax. 

3 Diversity control 

Each ant constructs a tour by explicitly using elements of 
previous effective solutions in ACO. The underlying idea of 
this process is parallel with the concept of the building block 
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hypothesis in genetic algorithms, while ACO not only 
identifies building blocks but also identifies correlations 
between building blocks. 3 

One of the central themes of the research of this type of 
meta-heuristics including evolutionary computation is the 
balance between intensification (exploitation of the previous 
solutions) and diversification (exploration of the search 
space). In genetic algorithm (GA), fitness evaluation and 
selection are directly related to intensification, mutation is 
directly related to diversification, and crossover concerns 
both of them. The trade-off between them can be explicitly 
controlled by adjusting the mutation rate. In ACO, phero- 
mone depositing is equivalent to fitness evaluation and edge 
selection by ants is comparable to selection and crossover in 
GA. 

Here we briefly survey the research that has been con- 
ducted to extend or modify the first algorithm ant system 
(AS) in terms of the balance between exploitation and 
exploration. 

The ant colony system (ACS) develop by Dorigo and 
Gambardella 4 adopts a modified selection rule called the 
pseudo random proportional rule which favors transitions 
toward nodes connected by short edges and with a large 
amount of pheromone. ACS also differs from AS in that 
the updating rule is applied only to edges belonging to the 
global best tour (the shortest tour from the beginning of the 
trial). These two modifications accelerate intensification. 

Sttizle and Hoos 7 proposed the MAX-MIN ant system 
(MMAS), an extension of AS applied to TSP. Possible trial 
values are restricted to the interval ['gmin, Tmax], where these 
two parameters are set up in a problem-dependent way, 
This modification prevents ants from converging to a local 
optimum. MMAS also adopts a concept of elitism in which 
only the best ant at each iteration updates trails. These are 
the main differences between MMAS and AS, aiming to 
achieve good balance between exploitation and explora- 
tion. Moreover, Stiizle and Hoos proposed an additional 
mechanism called pheromone trail smoothing (PTS). This 
mechanism helps to achieve a more efficient exploration. 

Bullnheimer et al. 8 proposed another modification of AS, 
called ASrank , introducing a rank-based version of the pro- 
bability distribution which allows only o - 1 "elite ants" to 
deposit pheromone based on tour length. At the same time, 
the best tour found so far is also updated in consideration of 
exploitation. The updating rule is described as follows: 

O-i  
xq(t + 1) = p~q(t) + Z Az~(t) + A~*(t), (4) 

~t=l 

A~(t)='(o-~)Q/L~(t) if(i,j)~TV(t), 
0 if(i,j)~r"(t), (5) 

Ax,( t )='oQ/L~(t)  if(i,j)~T*(t), 
0 if(i,j) q~T*(t), (6) 

where L~(t) is the length of the tour generated by the ~t-th 
best ant at iteration t, T~(t) is the set of edges constituting it, 
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L * ( t )  is the length of the tour generated by the best ant by 
iteration t, and T*(t) is the set of edges constituting it. 

ASd~,e was also proposed by Bullnheimer et al. as the first 
extension of AS prior to ASra.k. The idea is only to give 
extra emphasis to the best tour found so far without ranking 
by adding Eq. 6 to the updating rule in AS as follows: 

m 

�9 q(t + 1) = 9"cq(t) + Z A~/~ + A~*. (7) 
k - 1  

In general, there are supposed to be at least two types of 
diversity in ACO: (a) diversity in finding tours, and (b) 
diversity in depositing pheromone. We examine the effects 
of explicitly controlling diversity (a), while most of the 
ACO algorithms proposed so far have placed emphasis on 
adjusting diversity (b). We believe that control of diversity 
(a) would work better because the effect of control of diver- 
sity (a) is adjusted automatically based on adopted mecha- 
nisms that realize some sort of elitism, whereas control of 
diversity (b) directly affects diversity (a) in general. 9 

For this purpose we introduce in ACO a mechanism of 
random selection in addition to the original selection de- 
fined by Eq. 1 that is base on both pheromone trails and 
heuristic information. Random selection adopted in this 
study is a very simple operation which selects a city among 
unvisited cities with equal probability, whose function is 
equivalent to the mutation adopted in evolutionary compu- 
tation. Random selection rate r is a probability with which 
random selection is operated every time each ant selects the 
next city, and this parameter adjusts the balance between 
exploitation and exploration continuously. Two schemes 
for finding better tours exist, and are based on introduced 
random selection. 

In the first scheme, increase in diversity in finding tours 
by random selection directly results in finding of the global 
best tours. In other words, tours containing an edge or 
edges taken by random selection update the global best 
tours. Figure la  shows a simple example of finding a global 
best tour. Pheromone trails are represented by shaded lines, 
cities are represented by circles, and tours are represented 
by solid lines in this figures. An ant may start from city 1 and 
move to city 2. In the case that an ant selects the edge 
between city 6 and city 8 by random selection, the tour 
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Fig. 1. Two simple examples of searching for a best tour a by control- 
ling diversity, and b by controlling two types of diversity 

obtained is shorter than the tour generated by following the 
pheromone trail. 

In the second scheme, increase in diversity in finding 
tours by random selection affects diversity in depositing 
pheromone in the first stage and this enables a new global 
best tour to be found in the second stage. Two types of 
diversity underlying in ACO are cleverly used in this 
scheme. Consider the simple scenario shown in Fig. lb  as an 
example. There is a pheromone trail (i). Then an ant using 
random selection finds another tour (ii). The ant deposits 
pheromone (iii). Finally another ant in the following gen- 
erations finds the global best tour without random selection 
(iv). 

Thought it can be introduced in any ACO algorithms in 
principle, this article examines the case that the mechanism 
of random selection is introduced in ASra.k for the following 
reasons: (1) tours containing an edge or edges taken by 
random selection are supposed to be worse because random 
selection disregards not only pheromone information but 
also heuristic information. Therefore, it becomes essential 
to adopt the idea of elite ants like the ones in AS,~,k because 
the effect of diversity control on the pheromone diversity is 
adjusted implicitly; (2) ASrank sometimes showed a tendency 
of performance limit caused by the emphasis on intensifica- 
tion in our preliminary experiments; (3) AS,ank is one of the 
newest versions of ACO and is reported to outperform the 
other ACO methods. 8 

4 Experiments 

4.1 Setting 

We analyzed the effects of diversity control by introducing 
random selection in AS,=,k, based on computational ex- 
periments. We tested the extended algorithm on eli51.tsp 
including 51 cities from the TSPLIB (www.iwr.uni- 
h e i d e l b e r g . d e / g r o u p s / c o m o p t / s o f t w a r e / T S P L I B 9 5 ) ,  where 
optimal tour lengths are 426. Random selection rate r was 
set at [0.01, 0.1]. The number of ants was set to the number 
of the cities. ACO parameters were set to the following: (a, 
[3, p, Q, o) = (1, 5, 0.5, 100, 6), that are suggested to be 
advantageous. 9 The original ASr=,,k and ASe~i,e were tested as 
comparative experiments with the same parameter  setting 
as above, o was set to the number of cities in ASd~,e. Ten 
trials were conducted for each algorithm, and each trial 
consisted of 10000 iterations. 

Other studies 6's showed the following tendencies con- 
cerning the parameters used in conventional ACO: if (x is 
too high compared with [3, the algorithm tends to show 
stagnation behavior without finding good solutions. If 
(x is too low, the algorithm operates like a stochastic 
multigreedy algorithm. If P is close to zero, pheromone 
evaporates immediately and the algorithm cannot exploit 
the positive feedback. If P is too close to unity, there is the 
danger of early convergence of the algorithm. Q has rather 
negligible effects on results. We also observed these tenden- 
cies, especially the sensitivities of the parameters a and 13, in 
our preliminary experiments. 



Table 1. Computational results on ei151.tsp 

Method/r Best Avg Std Dev 

AScii, e 426 (0.00%) 432.6 (1.55%) 7.07 
ASr,,k 435 (2.11%) 447.7 (4.93%) 11.96 
0.01 426 (0.00%) 430.7 (1.10%) 3.47 
0.02 428 (0.47%) 430.8 (1.13%) 1.93 
0.03 426 (0.00%) 427.2 (0.28%) 1.81 
0.04 426 (0.00%) 427.3 (0.31%) 1.25 
0.05 426 (0.00%) 426.7 (0.16%) 1.49 
0.06 426 (0.00%) 432.8 (1.60%) 6.51 
0.07 426 (0.00%) 429.6 (0.85%) 4.95 
0.08 426 (0.00%) 440.0 (3.29%) 8.94 
0.09 428 (0.47%) 439.1 (3.08%) 8.35 
0.10 426 (0.00%) 440.9 (3.50%) 8.35 

Method/r, Best, Avg, and Std Dev represent the method or value of 
random selection rate r, the shortest tour length, the average tour 
length, and the standard deviation of tour length over 10 trials, respec- 
tively. The top two rows show the results of the original ASra,k and 
ASe~it ~ methods. The other rows show the results of ASrank with random 
selection. Values in parentheses are the percentage differences from 
the optimal tour length (426) 
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Table 2. Computational results on st70.tsp 

Method/r Best Avg Std Dev 

ASe,it e 691 (2.37%) 706.9 (4.73%) 6.61 
ASr,,k 740 (9.63%) 791.7 (17.29%) 26.00 
0.01 675 (0.00%) 684.1 (1.35%) 8.14 
0.02 677 (0.30%) 682.3 (1.08%) 3.71 
0.03 677 (0.30%) 684.4 (1.39%) 7.91 
0.04 677 (0.30%) 685.0 (1.48%) 5.56 
0.05 676 (0.15%) 683.9 (1.31%) 9.02 
0.06 679 (0,59%) 687.1 (1.79%) 5.22 
0.07 679 (0.59%) 689.9 (2.21%) 11.17 
0.08 681 (0,89%) 692.3 (2.56%) 9.57 
0.09 691 (2,37%) 704.7 (4.40%) 11.39 
0.10 694 (2.81%) 703.8 (4.27%) 7.64 

Table 3. Computational results on kroA100.tsp 

Method/r Best Avg Std Dev 

ASetite 
ASrank 
0.001 

Our  pre l iminary  exper iments  also showed the following 0.002 
tendency concerning pa ramete r  o for ASrank. If O is tOO lOW, 0.O03 
the algori thm tends  to show stagnation behavior  without  0.004 

0.005 
finding good solutions. If o is too high, the  ranking mecha-  0.006 
nism does not  work  and the behavior  becomes like the ant  0.0O7 
system. 0.008 

The mechanism of r andom selection directly controls  0.0O9 
0.010 

diversi ty in the A C O  framework,  based on our view that  
diversity control  is essential to improve the per formance  of  
A C O .  Therefore ,  we aim to improve the per formance  of  
A C O  by adjust ing the random selection rate  r even on the 
premise of ra ther  rough adjus tment  of the other  parameters .  

4.2 Compar i son  of tour  length 

Table  1 shows the results of  the experiments .  
Table  1 shows that  ASelit e o u t p e r f o r m s  ASrank is this case, 

similar to the results of the exper iments  by Sttizle and 
Hoos.  7 

It can be observed  that  in t roduct ion of  r andom selection 
improves  the per formance  of  mSrank on the whole. A n  opti-  
mal  solut ion was found over  a wide range of r andom selec- 
t ion rate  and best  solutions among three algori thms were 
obta ined  when the random selection rate  was be tween  0.03 
and 0.06. It is notewor thy  that  when the random select ion 
rate  was 0.05 the result  (426.7) ou tper fo rmed  the recent ly  
r epor ted  result  of  M M A S  + PTS (427.1). 7 In addit ion,  the 
s tandard  devia t ion  was very small (less than 2) when the 
random select ion rate  was be tween 0.02 and 0.05 compared  
with the o ther  two algori thms (7.07 and 11.96). This result  
shows the stabil i ty of the ex tended  algorithm. 

We also tes ted the ex tended  algori thm on st70.tsp 
including 70 cities (its opt imal  tour  length is 675) and 
kroA100. tsp including 100 cities (its opt imal  tour  length is 
21282) from the TSPLIB.  The  result  appea red  consistent  
with the above-ment ioned  result,  in which introduct ion of 
r andom select ion reduced the average deviat ion f rom the 
opt imal  solut ion (Tables 2 and 3). The opt imal  solut ions 

21361 (0.37%) 21517.7 (1.11%) 86.04 
21637 (1.67%) 22168.5 (4.17%) 431.32 
21282 (0.00%) 21582.0 (1.41%) 277.04 
21305 (0.11%) 21452.8 (0.80%) 168.82 
21305 (0.11%) 21428.6 (0.69%) 122.76 
21282 (0.00%) 21473.0 (0.90%) 196.23 
21282 (0.00%) 21410.3 (0.60%) 154.81 
21292 (0.05%) 21435.7 (0.72%) 128.74 
21282 (0.00%) 21398.4 (0.55%) 112.05 
21305 (0.11%) 21404.0 (0.57%) 87.14 
21282 (0.00%) 21390.9 (0.51%) 63.68 
21305 (0.11%) 21430.6 (0.70%) 134.97 

were found independent ly  of p rob lem size when the ran- 
dom selection rate  was set up appropr ia te ly .  Also,  average 
tour  lengths were greatly improved  on all the problems by 
adopt ing random selection. Therefore ,  it seems quite prob-  
able that  the effectiveness of  this mechanism for further 
larger p roblems  will be shown. 

4.3 Diversi ty of phe romone  

The number  of different  tours  found by elite ants and the 
number  of different  tours containing an edge or edges by 
random selection found by eli te ants were investigated. This 
was to clarify how diversity in finding tours, increased by 
r andom selection, affect diversity in deposi t ing phe romone  
(which is corre la ted  with diversi ty of  tours when P is small). 

Transi t ions of these two numbers  over  1000 i terat ions are 
shown in Fig. 2. In the case of ASrank (Fig. 2a), tours found by 
elite ants converged to one tour  without  selecting new edges 
in the early i terations.  The reason is considered to be that  
exploi ta t ion was overly accelerated.  In the case that the 
r andom selection rate  was 0.01 (Fig. 2b), tours found by elite 
ants also converged to near ly  one tour, while tours that 
upda ted  the best  tour  somet imes conta ined the edges taken 
by r andom selection. However ,  diversity of phe romone  was 
considered to be not  enough in this case, because the number  
of different  tours found by eli te ants was small. 

F igure  2c shows the case in which the random selection 
rate was 0.05 and the best  pe r fo rmance  was achieved. The 



Table 4. Proportion of tours containing edge(s) selected by random 
selection 

Tour length All RS 

420-429 22 12 (55%) 
430~39 37 13 (35%) 
440-449 24 9 (38%) 
450-459 24 11 (46%) 
460-469 8 4 (50%) 
470~-79 9 4 (44%) 
480-489 9 4 (44%) 
490-499 9 4 (44%) 
500-589 21 13 (62%) 
Total 163 74 (45%) 

All expresses the number of times the global best tours were found, RS 
expresses the number of times those tours found contained edges taken 
by random selection 

number  of different  tours found by elite ants was near ly  5, 
which shows that  diversity of phe romone  was mainta ined.  
Approx ima te ly  half of the tours found by elite ants con- 
ta ined edges taken  by random selection. 

In the case for which the random selection rate  was 0.1 
(Fig. 2d), most  tours genera ted  by elite ants conta ined  edges 
taken by r andom selection. This means that  diversi ty 
in finding tours  increased by random selection directly 
affected diversi ty of pheromone .  Tours  containing edges 
taken by r andom selection are worse than those without  
such edges, on average. Therefore ,  it can be said that  diver- 
sity in finding tours overly influenced the posit ive feedback 
in A C O .  

Fig. 2a-d. The number of different tours generated by elite ants and 
the number of tours including edge(s) selected by random selection 
generated by elite ants 

4.4 Effect iveness of r andom selection 

The effectiveness of r andom selection, or how strongly the 
two schemes descr ibed in Sect. 3 work,  was invest igated by 
focusing on ten trials when the best  per formance  was 
achieved (r = 0.05). 

First,  in o rde r  to test the effectiveness of the first scheme 
descr ibed in Sect. 3, we examined whether  global  best  tours 
contained the edges taken  by r andom selection when these 
tours were found. Table  4 shows the number  of  global  best  
tours containing such edges for every classification of tour  
length (an interval  is 10 when tour  length is less than 500). 
Table  4 shows that  the p ropor t ion  of tours using r andom 
selection was more  than 30% for every classification of  tour  
length. It should be no ted  that when opt imal  or  near-opt i -  
mal tours were  found, the p ropor t ion  was as high as 55%. 
The average propor t ion  was about  45%, which means  that  
r andom selection worked  well in updat ing the global  best  
tour  without  depending on the progress  of searching. 

In o r d e r  to test the effectiveness of the second scheme 
descr ibed in Sect. 3, we also examined whether  the global  
best  tours consisted of edges on which phe romone  was de- 
posited,  when new global best  tours were found. Fo r  this 
purpose,  we discr iminated the use of phe romone  based  on 
whether  each edge had been found by random selection or  
not, when every phe romone  was deposi ted.  Figure  3 shows 
the average percentage  of phe romone  depos i ted  by r andom 
selection over  all edges, when the global  best  tours were 
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Fig. 4. Conceptual diagram of a feedback mechanism utilizing two 
types of diversity 

found. Each point represents the proportion deposited by 
random selection and tour length when the global best tour 
was found. The regression line was drawn by a linear least 
squares method. It can be seen that pheromone deposited 
by random selection played an appropriate role without 
depending on the progress of searching. 

This scheme can be summarized as follows: (1) an ant 
using random selection becomes an elite ant; (2) phero- 
mone is deposited on the tour generated by the ant, which 
means an increase in pheromone diversity; and (3) another 
ant in the following generations finds a global best tour by 
using the pheromone (Fig. 4). 

In this scheme, the elite ants are dynamically divided into 
two classes depending on whether random selection was 
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used or not. It can be said that cooperation between two 
classes of ants transforms the positive feedback in ACO 
moderately from the inside with the result that good solu- 
tions are found. When the random selection rate is small, it 
is rare that ants using random selection become elite ants. 
However, elite ants using random selection appear when 
the random selection rate becomes larger. When the ran- 
dom selection rate is within a certain range, a mechanism of 
elitism supports the abovementioned self-regulating mecha- 
nism. However this mechanism does not work well and it is 
difficult to obtain good solutions when the random selection 
rate is too large. 

5 Conclusion 

This study investigated the effects of controlling the diver- 
sity in the ACO framework. For this purpose, we intro- 
duced a mechanism of random selection in AS,,,k which is 
one of the newest ACO algorithms. The results have shown 
that the average deviation from optimal solutions can be 
reduced by 80%-90%. We have found that the effect of 
control of diversity in finding tours is adjusted automatically 
based on adopted mechanisms that realize some sort of 
elitism. In this scheme, the elite ants are dynamically di- 
vided into two classes and cooperation between these two 
classes of ants transforms the positive feedback in ACO 
moderately from the inside, which results in finding of good 
solutions. 

We are now investigating the effects of diversity control 
further in order to address the question: does it work well 
when larger problems are targeted, when other optimiza- 
tion problems are targeted, or when the mechanism of ran- 
dom selection is introduced in other ACO algorithms? 

In addition, this study can be classified as a study of 
"misperception", because random selection can be re- 
garded as misperception of pheromone information. It has 
been shown quantitatively that misperception could have a 
beneficial effect from a collective view point when individu- 
als misperceive incoming information, which leads to an 
increase in diversity. 1~ It would be also interesting to inves- 
tigate the parallelism between the results by regarding ran- 
dom selection as misperception of pheromone information. 
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