
Artur Matos, Reiji Suzuki and Takaya Arita, "Heterochrony and

Evolvability in Neural Network Development", Artificial Life and

Robotics, Vol. 11, No. 2, pp. 175-182, 2007.

（Draft Version）

Abstract

Recent studies in evolutionary computation have focused on using developmental processes together with

genetic algorithms in order to achieve more complex designs. Although several models have been proposed, their

growth dynamics, and their interactions with evolutionary algorithms are still poorly understood. One particu-

larly neglected concept in artificial developmental systems is heterochrony — how evolution affects development

by changing the timing and rate of developmental events. In this paper we attempt to address this issue by

analyzing heterochronic changes in a well known artificial developmental model — the cellular encoding model

— by using an heterochrony framework by Alberch et al. We have conducted experiments by evolving networks

to solve a boolean problem, and analyzed heterochronic changes in both successful and unsuccessful runs. Our

findings show that the cellular encoding model, due to its properties, strongly affects the developmental dynam-

ics and the heterochronic changes that occur during evolution. Our experiments also show that hypermorphic

changes (a kind of heterochronic occurrence) lead to greater evolvability in successful runs.

2

1 Introduction

Recently there has been an increasing interest within the EC (Evolutionary Computation) community in simulating

developmental processes alongside evolution.1 This approach has already proved to be fruitful, allowing evolutionary

algorithms (EAs) to generate more complex designs than traditional approaches, and it has been applied to a wide

range of domains, including, among others, neural networks2 and artificial creatures.3 Although several of these

models have been proposed, there is still no throughout understanding on how they work, specially on how evolution

and development interact. One particularly important area, and that we will address in this paper, is to try to

understand how the EA shapes the individuals by rearranging the underlying developmental events.

In evolutionary and developmental biology, this change in the rate, timing and order of developmental events

caused by evolution is generally known as heterochrony .4 Heterochrony is a well observed phenomena and prevalent

in the evolution of species. A well known example can be found in the Mexican axolotl salamander: most salamander

species have two distinct stages of development, a larval and an adult stage. However, the Mexican axolotl does not

undergo metamorphosis, and achieves sexual maturity in what would still be considered a larval form. Therefore,

from an evolutionary point of view, we can say that evolution shaped the axolotl species by “slowing down” their

ancestor’s development. Because examples like this are so common in nature, it is speculated that heterochrony is

one of the major factors in the evolution of more complex taxa.

Unfortunately, and despite of this, EC studies on heterochrony are still lacking. A recent review paper on artificial

developmental models1 identified heterochrony as one of the important dimensions to pursue in research, but there

are still very few published results on the topic:5 described heterochronic occurrences in a developmental model

based on genetic regulatory networks (GRNs). The author evolved neural networks for solving a food foraging

problem, and then compared developmental events between ancestor and descendant networks. By proceeding this

way, he was able to identify several different kinds of heterochrony, for instance, occurring in cell division events

and during axon growth.3 also used a GRN-based model, but for evolving artificial creatures, with coevolved

morphologies and neural networks. The author evolved individuals for a locomotion task, and then performed

mutation experiments to analyze the evolved GRNs. He then observed that mutation in some individuals caused

morphological units to appear earlier or later compared to the original individual.

Although these previous studies show that heterochrony does indeed occur in artificial developmental models,

there are still several questions remaining unanswered. First, it is still not clear to what extent these models

support heterochrony, or if they direct evolution to certain kinds of heterochronic occurrences more than others. A

second, and perhaps even more important question is to understand how heterochrony relates to EA performance:

for instance, can we expect certain kinds of heterochronic occurrences to be more conductive to evolvability than

others? As a starting point for the first question, in a previous paper,6 we have applied a heterochrony framework

to a well known developmental model — the cellular encoding model developed by Gruau.2 This framework, by

3

Alberch et al ,7 offers both a precise terminology and methodology to study heterochronic phenomena in living

systems. In this paper, we extend our previous results, and also attempt to undertake the second question. For

this, we have used the cellular encoding model to evolve neural networks to solve a boolean problem, and applied

the framework to a large ensemble of networks. This allows us to characterize heterochrony in artificial systems in

a more complete way than the previous studies. For the second question, we have applied the framework to both

successful and unsuccessful experiments, and compared the heterochronic occurrences between them, to check for

any meaningful differences.

2 Alberch et al ’s framework

The framework by Alberch et al is widely used in biological systems for analyzing heterochronic phenomena. This

framework is based on the measurement and comparison of quantitative traits, for instance, body length, width or

height. The traits are measured as development unfolds, yielding growth curves. These growth curves can then be

compared between related species for understanding the heterochronic change involved.

The basis for comparison lies on three metrics that can be extracted from the growth curves: α — the time

when growth starts, β — the time when growth ends, and K — the growth rate. Comparing these values between

species yields the outcomes summarized in Figure 1. For instance, considering only changes in the K parameter, two

outcomes are possible: if the descendant would grow faster than the ancestor (K would be larger), the corresponding

outcome is acceleration. The reverse process — the descendant growing slower than the ancestor — is labeled

neoteny. Furthermore, changes can be combined on the three parameters, although we didn’t consider them in this

analysis.

3 Cellular encoding

Cellular encoding is a developmental model originally proposed by Gruau2 for evolving neural networks. We have

chosen this model because it has proven track for evolving neural networks, for a wide range of problems, including

threshold neural networks for boolean problems2 and controllers for robot locomotion.8 Instead of using GRNs as

in5 or,3 the cellular encoding model specifies development as a set of graph-rewriting instructions that are evolved

directly. The original model, that we follow in this paper, only evolved simple threshold networks: the neurons were

threshold neurons with thresholds of either 0 or 1, with the connections between the neurons being either -1 or 1.

Cellular encoding defines a set of commands for operating on graphs, that changes the graph as development

unfolds. In its original description, development is described as a sequence of these commands, grouped in a Genetic

Programming (GP) tree. These trees are then used just as standard genotypes in a GP system. Each network

starts as a single neuron, with a pointer pointing to the root of the tree. Development on each neuron proceeds

4

by executing sequentially the nodes with the developmental commands. There are different kinds of commands,

including commands for dividing cells, creating new connections, setting thresholds and so on. For instance, the

PAR instruction, when applied to an existing neuron, creates a new neuron and copies the connections (both the

input and output connections) from the original neuron to the new one. PAR nodes contain two children, that are

inherited by each neuron (the original and the new one), allowing for cell differentiation to occur. Development

in the network occurs in a parallel fashion: on each time step each neuron executes the command pointed by its

register in the tree and moves to the following leaf. The developmental process is over when all the neurons have

reached their final leaf node in the tree. A summary of the commands is shown in table 1.

4 Experiments

In his original experiments, Gruau evolved networks only for solving boolean problems, for instance, the odd-parity

problem and the symmetry problem. In this paper, we decided to use a different boolean problem: the function we

are trying to optimize has 3 inputs and 1 output, with the inputs ranging from 000 to 111. All the inputs in this

function produce the output 0 except for two entries corresponding to inputs 011 and 100, where the output is 1.

Our experiments have shown that this problem is particularly difficult to solve, and therefore could be used as a

good problem for checking relationships between heterochrony and evolvability.

The fitness function used consisted of two parts: the first accounting for the number of right output values, and

the other part rewarding networks with the right number of input and output neurons. The first part just computes

the number of correct output values, ranging from 0 to 8. The second part returns the number of input neurons

(or 3, whichever is smaller), and the number of output neurons (or 1, whichever is smaller). This latter part was

deemed necessary to ensure that the problem could be solved at all. They are then weighted (with 0.75 for the

number of right output values, and 0.25 for the number of right input/output neurons), and normalized between the

range [0, 1] with 1 as the best fitness. Furthermore, because tree depth tended to increase rapidly during evolution

(tree bloat), we have imposed an upper limit of 30 neurons in the networks; all the networks that exceed this limit

were assigned a fitness value of 0.

We used a GP system, with both population size and the number of generations set to 300. Tournament selection

was used, with a tournament size of 7. Crossover was not used, and all the individuals were mutated with a 70%

probability. The mutation operator follows Koza’s GP original description: if a mutation occurs, first a node is

selected at random in the GP tree; The node is then replaced with a new random subtree, with a maximum depth

of 5.

We have conducted several evolutionary runs, all with different random seeds. Because of the problem difficulty,

several of the runs never found any optimal network, and converged into a local optima. For analysis, we kept 80

runs of all the ones conducted: 40 where the optimum was reached, and 40 that converged to a local optima.

5

5 Analysis

5.1 (α, β, K) dynamics

All of the successful runs exhibited similar behavior. On average, it took 110.7 generations to reach the optimum.

A fitness graph of a typical run can be seen in Figure 2, and an optimal network in Figure 3.

In order to apply the Alberch et al framework to the model we needed to choose suitable traits for analysis. We

decided to consider the number of nodes and the average network degree (considering both incoming and outgoing

connections), as they are the essential measures related to the network topology. We also decided to analyze the

fitness dynamics, and treated the intermediate fitness values — how the fitness changes during development — as

another trait in the framework. By proceeding this way, we could then check if the fitness dynamics played an

important role in evolution, although for evaluation purposes only the fitness value of the last developmental step

is considered. To get an idea how these traits change with development, Figure 4 shows growth curves of these 3

traits, in two different individuals. The dynamics on the right are from the best network in Figure 3.

Furthermore, to apply the framework, we need to extract the three parameters — α, β and K — from the growth

curves. The framework itself does not define a method for doing this, and several methods have been proposed in

the literature. In biological studies, one common method is to fit the data to a growth model (for instance, the Von

Bertalanffy growth curve) by using non-linear regression, and then extract the parameters from the fitted equation.

This works well for biological data because they tend follow well-known patterns, and there are several sensible

growth models available in the literature. In contrast, as shown in Figure 4, our growth curves tend to be rather

irregular, so this approach is not feasible. Therefore we decided to use a simpler approach: for our growth curves,

we defined α and β as the developmental time where growth effectively starts and stops in the data, that is, where

changes in the values occur for the first and last time during development. As for K, we defined it as the average

growth rate. Figure 5 shows the evolution of these three parameters in one typical, successful run. This example

refers to the best lineage, that is, all of the individuals, starting from the first generation, that gave rise to the best

individual in the last generation.

In this example, we can see that beta increased and K decreased through generations. This heterochronic change

corresponds to the combination of hypermorphosis and neoteny in Figure 1. One interesting point is that α didn’t

change at all during evolution, for any of the 3 traits, and in any of the conducted runs. The reasons beyond this

are two: the first reason is that the cellular encoding model represents the developmental events sequentially in the

genotype, following tree order. Although the mutation operator does choose a node randomly in the tree, successful

mutations tend to target nodes at a greater depth, because these tend to create smaller changes in the phenotype,

and allow evolution to occur gradually. A change in the top-level node of the tree basically amounts to replace the

original individual with a completely unrelated one, so it does not take into account any of the previously found

solutions. The second reason is that in the cellular encoding model, almost all of the instructions must always

6

change the network in some way; therefore it is difficult for the model to generate delays in the timing of events.

5.2 Correlation analysis

We decided further to check if there was any significant correlation in the dynamics, by applying the Pearson’s

correlation coefficient to the data:

cor(X, Y) =
∑

(Xi − X)(Yi − Y)
(n − 1)SXSY

(1)

with Xi and Yi the parameter values of X and Y at generation i, X and Y as the mean values of X and Y , and

SX and SY as their standard deviation. A coefficient of 1 indicates a perfect correlation, and -1 a negative perfect

correlation.

We have applied this coefficient between individual parameters in the same trait (for instance between β and

K of the number of nodes trait), as well as for the same parameters in different traits (for instance, between β in

the number of nodes trait and β in the average degree trait). Because α never changes during the runs, α was not

considered in this analysis. We have also computed the coefficients separately for successful and unsuccessful runs.

The results are shown in Table 2. This data refers to the best lineages only, as in the example shown in Figure 5.

The correlation table shows how the cellular encoding model further constrains the developmental dynamics.

To understand it better, first it is necessary to explain how the model creates connections in the networks: in the

cellular encoding model, there is no explicit command for adding new connections, although there is a command for

removing them. The only way to create new connections in the networks is by cell division, that is, by creating new

neurons. Therefore the number of nodes trait and average degree cannot evolve independently, and become highly

correlated. This can be seen in the correlation coefficient of the number of nodes β and average degree β: in most

cases, the growth of the average degree trait stops growing effectively when the number of nodes also stops growing,

except when remove connections commands are found after the last cell division command. This seems to rarely

happen, however, as it is shown in the table. A similar reason is behind the high correlation between the average

degree’s β and K: as indicated before, our fitness function imposes an upper limit on the number of neurons that

a network may have; this combined with what was explained now effectively defines an upper limit on the average

degree as well. This makes β and K negatively correlated, in order for the networks not to exceed this upper limit.

This also explains why on the unsuccessful runs this correlation is lower.

The lower rows in the table, concerning correlations between the topological traits and fitness are also important,

because they show how the dynamics contribute to the fitness as whole. The first thing that can be observed is that

the average degree parameters are more strongly correlated with fitness than the number of nodes. This is to be

expected, because the connectivity of the network (the way that the neurons are connected to each other) is more

important for solving this problem than the number of nodes. Other important point is that higher β correlations

7

between the topological traits and fitness seem important to assure successful evolution. Unfortunately, because we

have only conducted analysis using this problem so far, at this time it still difficult to say why this occurs.

5.3 Occurrence analysis

Based on the previously computed parameters, we further classified the changes according to the framework, with the

results depicted on Table 3. Results for all the three traits were similar, so only the number of nodes trait is displayed.

As it is shown in the table, all possible outcomes (with the exception of predisplacement and postdisplacement, as

it was explained before) occur with significant values; this, therefore, shows that the cellular encoding model is able

to generate most kinds of heterochronic events. We can see that there is a difference in the occurrences among the

heterochoronic changes. For instance, isomorphosis was the most frequently observed occurrence in successful and

unsuccessful runs, neoteny the second most frequent one, but progenesis rarely occured in both runs. The relative

distribution of these occurrences is basically the same between successful and unsuccessful runs, but we can also see

that each heterochronic occurrence was slightly less observed in successful runs compared with unsuccessful runs.

All these differences are statistically significant.

On average, 54% of the occurrences in Table 3 were real changes (non-isomorphic); this is much lower than

what should be expected, considering the mutation probability that was used (70%). This means that selection

favors isomorphic changes in the system (that is, neutral mutations), and overall it should be favoring isomorphic

changes in the successful runs. One possible reason for this is that there could be an increased pressure for neutral

changes after the optimum has been reached. We decided to check if this occurred, by performing the following

analysis: on all experiments, we have divided the individuals in the best lineages into two groups: the first group

with all the individuals before the optimum has been reached, and the second group with the remaining ones.

For the unsuccessful experiments, we considered the highest reached value as the optimum. On almost all the

experiments, the number of isomorphic changes increases after the optimum was reached, regardless of being a

successful run or not. We have applied a Fisher exact test to each experiment to check for statistical significance,

and the difference in ratios was significant in 16 of the 40 successful experiments, and exactly the same number

of unsuccessful experiments. We believe that this difference in ratios was significant only for a small number of

experiments due to the the small sample size in some of the runs: in some of the experiments the optimum is found

rather early in evolution, and this makes the sample size before the optimum very small compared with after the

optimum is reached; this causes the statistical test to fail in these experiments, although the number of isomorphic

changes almost always increases after the optimum is reached (with the exception of 2 experiments out of the 80).

Because there is no significant difference between successful and unsuccessful runs in these cases, we cannot conclude

that neutral mutations are concentrated after the optimum is reached in the successful runs. Therefore, although

successful runs have an increased rate of isomorphic occurrences, they are evenly distributed during evolution.

Extending this statistical analysis to cover all kinds of occurrences and all the experiments is difficult, and it will

8

not be attempted in this paper; nevertheless, in table 4, we summarize these results. Table 4 shows the average

ratios between each kind of heterochronic occurrence dividing by the total number of occurrences, before and after

the optimum was reached. We can see on the table that isomorphosis does indeed occur with more frequency

after the optimum is reached, and that the other heterochronic occurrences are less frequently observed after the

optimum is reached. This, therefore, supports our previous point.

We have also decided to compute the total changes in fitness that each kind of occurrence has lead to: for

instance, for the neoteny case, we have computed all the differences in fitness values due to neotenic occurrences.

The results are shown in Table 5. There were no statistical significant differences to be found between successful and

unsuccessful runs, but still we can observe differences among the heterochronic occurrences: first, the total increase

in fitness is quite different for each heterochronic change, and it is not proportional to their number of occurrences.

For instance, hypermorphosis brought the highest increase in fitness in both successful and unsuccessful runs,

although it is only the third most frequent occurrence. This is particularly noticeable in the successful runs. These

differences between heterochronic types are all highly statistically significant (with p closer to 0). These results

partially show that hypermorphosis tends to yield rapid increases in fitness compared to the other occurrences,

and therefore promote evolvability. One possibility is that hypermorphosis is increasing the search space used by

evolution, and therefore making mutations more efficient. Because hypermorphic changes correspond to increases

in developmental time (β), this also increases the range, in developmental time, where mutations may occur. This,

in turn, increases the range of phenotypes reachable by mutation, allowing the search space to be more efficiently

explored.

6 Conclusion

In this paper we have shown that the framework by Alberch et al is a valid method for studying heterochrony in

artificial systems, by applying it to a typical artificial developmental model, in this case the cellular encoding model.

Our results show that this model constrains developmental dynamics at least in two ways: first, because the GP

trees are executed sequentially during development, predisplacement and postdisplacement events are very unlikely

to occur; second, because the cellular encoding model can only create new connections by adding new neurons,

development of the topological traits are highly correlated.

Our results concerning heterochrony and evolvability are summarized as follows: first, our results point out that

stronger correlations between the way fitness changes during development and the topological dynamics may be

important for evolvability. Second, isomorphosis is the most observed change in both successful and unsuccessful

runs, and much more frequent than any other kind of heterochrony. Third, successful runs had more isomorphic

occurrences than unsuccessful runs, and they are evenly distributed during evolution. Fourth, hypermorphosis was

the heterochronic occurrence contributing more to increase fitness, and this should be due to it increasing the search

9

space used by evolution. However, it is still necessary to apply this framework to other tasks to see if these results

generalize to other problems. Future work will focus on these topics, and also extend the current analysis to different

kinds of models.

10

References

1. Stanley, K. O.; Mikkulainen, R. Artificial Life 2003, 9, 93-130.

2. Gruau, F. Neural Network Synthesis using Cellular Encoding and the Genetic Algorithm, Thesis, Laboratoire de

la Informatique du Parallelisme, Ecole Normale Superieure de Lyon, 1994.

3. Bongard, J. Evolving modular genetic regulatory networks. In Proceedings of The IEEE 2002 Congress on

Evolutionary Computation; IEEE Press: Piscataway, NJ, USA, 2002.

4. Klingenberg, C. P. Biological Reviews 1997, 73, 79-123.

5. Cangelosi, A. Heterochrony and Adaptation in Developing Neural Networks. In Proceedings of the Genetic and

Evolutionary Computation Conference, Vol. 2; Morgan Kaufmann: 1999.

6. Matos, A.; Suzuki, R.; Arita, T. Evolution of Development and Heterochrony in Artificial Neural Networks. In

Proceedings of the Tenth International Symposium on Artificial Life and Robotics; Beppu, Oita, Japan, 2005.

7. Alberch, P.; Gould, S. J.; Oster, G. F.; Wake, D. B. Paleobiology 1979, 5, 296-317.

8. Gruau, F. Adaptive Behaviour 1995, 3, 151–183.

11

List of Figures

1 The formalism of Alberch et al. A trait measure is plotted against developmental time in the X axis.
The solid line plotted from α to β represents the growth curve for the ancestor, while the remaining
ones possible heterochronic outcomes for the descendant. 13

2 Fitness graph of a typical run. 14
3 An example of an optimal network, found during our evolutionary runs. 15
4 Growth curves of the analyzed traits. These correspond to the best lineage taken from Figure 2. . . 16
5 Evolution of the α, β and K parameters in the best lineage, in one of the conducted runs. Top row:

number of nodes; middle row: average degree: bottom row: fitness. 17

12

α-δ α+δα β-δ β+δβ

Predisplacement
Postdisplacement

Neoteny

Hypermorphosis

Acceleration

Peramorphosis

Paedomorphosis

Progenesis

De
ve
lo
pm
en
t

Age

Figure 1: The formalism of Alberch et al. A trait measure is plotted against developmental time in the X axis.
The solid line plotted from α to β represents the growth curve for the ancestor, while the remaining ones possible
heterochronic outcomes for the descendant.

13

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

Fi
tn

es
s

Generation

Average fitness
Best fitness

Figure 2: Fitness graph of a typical run.

14

Input neuron (Threshold 0)

Neuron (Threshold 0)

Neuron (Threshold 1)

Output Neuron (Threshold 0)

Inhibiting connection (-1)
Exciting connection (1)

Figure 3: An example of an optimal network, found during our evolutionary runs.

15

 1
 2
 3
 4
 5
 6
 7

 5 10 15 20

N
um

be
r o

f n
od

es

Development
(a)

 2
 4
 6
 8
 10
 12
 14
 16
 18
 20

 0 10 20 30 40 50 60 70 80
N

um
be

r o
f n

od
es

Development
(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 5 10 15 20

Av
er

ag
e

de
gr

ee

Development
(c)

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80

Av
er

ag
e

de
gr

ee

Development
(d)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 5 10 15 20

Fi
tn

es
s

Development
(e)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

Fi
tn

es
s

Development
(f)

Figure 4: Growth curves of the analyzed traits. These correspond to the best lineage taken from Figure 2.

16

 0.99

 0.995

 1

 1.005

 1.01

 0 50 100 150 200 250 300

Al
ph

a

Generation
(a)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 50 100 150 200 250 300

Be
ta

Generation
(b)

 0.18
 0.19
 0.2
 0.21
 0.22
 0.23
 0.24
 0.25
 0.26
 0.27
 0.28

 0 50 100 150 200 250 300

K

Generation
(c)

 0.99

 0.995

 1

 1.005

 1.01

 0 50 100 150 200 250 300

Al
ph

a

Generation
(d)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 50 100 150 200 250 300

Be
ta

Generation
(e)

 0.015
 0.02
 0.025
 0.03
 0.035
 0.04
 0.045
 0.05
 0.055
 0.06

 0 50 100 150 200 250 300

K

Generation
(f)

 0.9 9

 0.995

 1

 1.005

 1.01

 0 50 100 150 200 250 300

Al
ph

a

Generation
(g)

 0
 10
 20
 30
 40
 50
 60
 70

 0 50 100 150 200 250 300

Be
ta

a

Generation
(h)

 0.005
 0.01
 0.015
 0.02
 0.025
 0.03
 0.035
 0.04

 0 50 100 150 200 250 300

K

Generation
(i)

Figure 5: Evolution of the α, β and K parameters in the best lineage, in one of the conducted runs. Top row:
number of nodes; middle row: average degree: bottom row: fitness.

17

List of Tables

1 Cellular encoding commands . 19
2 Correlation table for the heterochronic parameters. Entries in gray represent values where the differ-

ences between successful and unsuccessful runs showed a strong statistical difference (at the p = 0.05
level). p represents the p-value computed by applying t-tests on each set of data. NN - number of
nodes; AD - average degree; F - fitness. 20

3 Classification of heterochrony occurrences in all runs for the number of nodes trait. p represents the
p-value computed by applying t-tests on each set of data. I - isomorphosis; A - acceleration; N -
neoteny; P - progenesis; HM - hypermorphosis. 21

4 Ratios of heterochronic occurrences before and after the optimum was reached, for the number of
nodes trait. 22

5 Total increase in fitness due to each heterochronic type. p represents the p-value computed by
applying t-tests on each set of data. 23

18

Table 1: Cellular encoding commands
Command Description

PAR Parallel division: Divides a neuron into two, with the incoming and outgoing connections replicated
for the new neuron.

SEQ Sequential division: Divides a neuron into two, the first neuron inherits the incoming connections,
while the second neurons inherits the outgoing connections. A single connection is added to the
two.

DECBIAS Sets the neuron’s threshold to 1.
INCBIAS Sets the neuron’s threshold to 0.
DECLR Decreases the link register by 1. The link register is an internal variable in each neuron that points

to the current incoming connection that is being manipulated.
INCLR Increases the link register by 1.
VAL+ Sets the weight of the current incoming connection to 1.
VAL- Sets the weight of the current incoming connection to -1.
CUT Removes the current incoming connection.

19

Table 2: Correlation table for the heterochronic parameters. Entries in gray represent values where the differences
between successful and unsuccessful runs showed a strong statistical difference (at the p = 0.05 level). p represents
the p-value computed by applying t-tests on each set of data. NN - number of nodes; AD - average degree; F -
fitness.

Successful Unsuccessful

Correlation Mean SD Mean SD p

Same Trait:
(β − K)
NN −4.153 · 10−03 4.084 · 10−01 1.912 · 10−01 3.267 · 10−01 2.063 · 10−02

AD −7.853 · 10−01 1.125 · 10−01 −7.071 · 10−01 1.929 · 10−01 2.975 · 10−02

F −5.261 · 10−01 2.518 · 10−01 −2.845 · 10−01 3.133 · 10−01 2.840 · 10−04

Trait-Trait:
NN - AD
β - β 9.793 · 10−01 1.544 · 10−02 9.672 · 10−01 2.913 · 10−02 2.297 · 10−02

K - K 1.425 · 10−01 3.333 · 10−01 6.741 · 10−02 3.069 · 10−01 2.977 · 10−01

NN - F
β - β 5.868 · 10−01 2.921 · 10−01 2.617 · 10−01 3.589 · 10−01 2.903 · 10−05

K - K 9.159 · 10−02 3.598 · 10−01 −7.530 · 10−02 3.011 · 10−01 2.729 · 10−02

AD - F
β - β 6.040 · 10−01 2.912 · 10−01 2.689 · 10−01 3.678 · 10−01 2.197 · 10−05

K - K 7.640 · 10−01 1.566 · 10−01 7.559 · 10−01 2.173 · 10−01 8.494 · 10−01

20

Table 3: Classification of heterochrony occurrences in all runs for the number of nodes trait. p represents the p-value
computed by applying t-tests on each set of data. I - isomorphosis; A - acceleration; N - neoteny; P - progenesis;
HM - hypermorphosis.

Successful Unsuccessful

Trait Mean SD Mean SD p

I 1.822 · 10+02 2.544 · 10+01 1.695 · 10+02 1.970 · 10+01 1.485 · 10−02

A 5.537 · 10+01 1.203 · 10+01 6.272 · 10+01 9.578 · 10+00 3.388 · 10−03

N 6.105 · 10+01 1.410 · 10+01 6.627 · 10+01 1.190 · 10+01 7.726 · 10−02

HM 5.712 · 10+01 1.270 · 10+01 6.055 · 10+01 1.101 · 10+01 2.013 · 10−01

P 3.990 · 10+01 9.139 · 10+00 4.492 · 10+01 7.494 · 10+00 8.764 · 10−03

21

Table 4: Ratios of heterochronic occurrences before and after the optimum was reached, for the number of nodes
trait.

Successful Unsuccessful

Occurrence Mean SD Mean SD

I (before) 3.696 · 10−1 9.390 · 10−2 2.882 · 10−1 1.121 · 10−1

I (after) 5.166 · 10−1 1.025 · 10−1 4.407 · 10−1 7.050 · 10−2

A (before) 1.506 · 10−1 2.295 · 10−2 1.771 · 10−1 6.580 · 10−2

A (after) 1.285 · 10−1 3.270 · 10−2 1.500 · 10−1 2.090 · 10−2

N (before) 1.991 · 10−1 4.390 · 10−2 2.254 · 10−1 6.670 · 10−2

N (after) 1.355 · 10−1 3.680 · 10−2 1.573 · 10−2 2.320 · 10−2

HM (before) 1.854 · 10−1 4.710 · 10−2 1.945 · 10−1 7.030 · 10−2

HM (after) 1.266 · 10−1 2.780 · 10−2 1.422 · 10−1 2.290 · 10−2

P (before) 9.520 · 10−2 3.820 · 10−2 1.098 · 10−1 5.250 · 10−2

P (after) 9.290 · 10−2 2.420 · 10−2 1.098 · 10−1 1.570 · 10−2

22

Table 5: Total increase in fitness due to each heterochronic type. p represents the p-value computed by applying
t-tests on each set of data.

Successful Unsuccessful

Occur. Mean SD Mean SD p

I −2.656 · 10−03 3.794 · 10−02 5.312 · 10−03 2.345 · 10−02 2.620 · 10−01

A 3.101 · 10−01 2.807 · 10−01 3.525 · 10−01 3.449 · 10−01 5.488 · 10−01

N 2.946 · 10−01 2.748 · 10−01 2.093 · 10−01 2.328 · 10−01 1.382 · 10−01

HM 4.239 · 10−01 3.440 · 10−01 3.585 · 10−01 3.103 · 10−01 3.753 · 10−01

P 1.054 · 10−01 1.482 · 10−01 8.687 · 10−02 1.298 · 10−01 5.524 · 10−01

23

