
ORIGINAL ARTICLE

Artif Life Robotics (2006) 10:157–161 © ISAROB 2006
DOI 10.1007/s10015-005-0354-8

Yasuyuki Suzuki · Takaya Arita

A comprehensive evaluation of the methods for evolving a cooperative team

Received and accepted: November 30, 2005

Y. Suzuki · T. Arita (*)
Graduate School of Information Science, Nagoya University, Furo-
cho, Chikusa-ku, Nagoya 464-8601, Japan
Tel. +81-52-789-3503; Fax +81-52-789-3503
e-mail: arita@nagoya-u.jp

This work was presented in part at the 10th International Symposium
on Artificial Life and Robotics, Oita, Japan, February 4–6, 2005

Abstract This article focuses on the techniques of evolu-
tionary computation for generating players performing
tasks cooperatively. However, in using evolutionary compu-
tation for generating players performing tasks coopera-
tively, one faces fundamental and difficult decisions,
including the one regarding the so-called credit assignment
problem. We believe that there are some correlations
among design decisions, and therefore a comprehensive
evaluation of them is essential. We first list three fundamen-
tal decisions and possible options in each decision in design-
ing methods for evolving a cooperative team. We find that
there are 18 typical combinations available. Then we
describe the ultimately simplified soccer game played on
a one-dimensional field as a testbed for a comprehensive
evaluation for these 18 candidate methods. It has been
shown that some methods perform well, while there are
complex correlations among design decisions. Also, further
analysis has shown that cooperative behavior can be
evolved, and is a necessary requirement for the teams to
perform well even in such a simple game.

Key words Genetic algorithm · Cooperative behavior ·
Multiagent system · Ultimately simplified soccer game

1 Introduction

Some problems can be solved efficiently only by teams con-
sisting of cooperative autonomous players. Many research-
ers have developed methods that do not require human
designers to define the specific behaviors of players for each

problem. The work reported here focuses on the techniques
of evolutionary computation, which has been regarded as
one of the most promising approaches to solving such com-
plex problems. However, in using evolutionary computa-
tion for generating players performing tasks cooperatively,
one faces fundamental and difficult decisions, including the
one regarding the so-called credit assignment problem.1 For
example, if we can only evaluate the global performance of
each team, how do we divide up the team’s performance
among the participating players? We believe that there are
some correlations among design decisions, and therefore a
comprehensive evaluation of them is essential, although
several researchers have proposed evolutionary methods
for evolving teams performing specific tasks.

The rest of this artical is organized as follows. In Sect. 2,
we list three fundamental decisions and possible options in
each decision in designing a method for evolving a coopera-
tive team. We find that there are 18 typical combinations
available. Then in Sect. 3, we describe the ultimately simpli-
fied soccer game played on a one-dimensional field as a
testbed for a comprehensive evaluation of these 18 can-
didate methods. Sect. 4 reports on the results of the com-
prehensive evaluation of these methods, and Sect. 5
summarizes the work.

2 Methods for evolving a team

Three fundamental decisions are necessary when one de-
signs an evolutionary computation method for generating
players performing tasks cooperatively, and there may be
several combinations of options in these decisions.

The first decision is: How many evolving populations are
there? The answer is derived by considering whether or not
the population structure depends on the number of teams
in the game, or on the number of player roles in the game
(Fig. 1). Suppose that the game is played by 2 teams each
consisting of 3 players. We can assume an evolutionary
computation with 2 populations corresponding to 2 teams,
with 3 populations corresponding to 3 players, or with 6
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populations corresponding to 2 teams of 3 players. So the
typical options for the number of populations are 1, R, T,
and T · R (T, number of teams in the game; R, number of
player roles in the team).

The second decision is: What does each individual (ge-
nome) represent? Typical options are a player and a team.
In the case where each genome represents a player, there
can be two further options: all players in the team share one
genome (“homogeneous players”), or all players are repre-
sented by different genomes (“heterogeneous players”). In
the case where each genome represents a team, there can be
two further options: whether or not the roles of the players
represented in each genome are fixed. In the case where the
roles of the players are fixed, for example, if a part of a
genome represents a defender in the game, this part always
represents a defender.

The third decision is: How is the fitness function evalu-
ated? One option is that fitness is evaluated for a team as a
whole. In this case, if each genome represents a player, each
player in a team is supposed to have the same fitness. The
other option is that the fitness is evaluated for each player
directly or indirectly. Direct evaluation of players in a coop-
erative team is sometimes a very difficult task, as in general
altruistic behavior is important or essential in the establish-
ment and maintenance of cooperation in a population.
Some methods for indirect evaluation have been proposed.2

We adopt a method in which the fitness of a player is
defined as the decrease in the fitness of the team when the
player is replaced by a predefined “primitive player” who
has a minimum set of behavior rules.

Therefore, there could be 18 available combinations for
evolving players performing tasks cooperatively, as shown
in Table 1.

Many researchers have treated this issue, although most
of them focused on one or two methods of the 18 combina-
tions. Some significant studies are now described. 1–PHo–T
is the simplest method, in which there is one population and

all players in a team share one genome. Quinn et al.3

adopted this method, and successfully evolved agents that
specialize, based on their relative positions, in order to per-
form better as a team, although the agents were homog-
enous. Miconi2 adopted 1–PHe–PI, in which the fitness of
each individual was determined as the decrease in fitness
when that individual was not present in the team in the
context of on-line evolution. Luke4 evolved teams of soccer
players through an adapted version of genetic program-
ming: homogenous teams (1–PHo–T) and heterogeneous
teams (1–TFi–T). Potter and DeJong5 proposed coopera-
tive evolutionary algorithms, which can be classified into
R–PHe–T, and tested them in the domain of function
optimization, in which each population contained values for
one parameter, and the fitness of a parameter was obtained
by combining the current best parameters of the remaining
populations. Our previous study6 compared [1–PHe–PD],
[1–PHe–T], [1–TFi–T], [R–PHe–PD], and [R–PHe–T] us-
ing a multirobot model in which not only control of behav-
iors, but also morphology (including selection and the
arrangement of sensors/motors), evolved via ontogenesis.

3 Ultimately simplified soccer game

The ultimately simplified soccer game is defined as a testbed
for a comprehensive evaluation for these 18 candidate
methods. It is a 2 vs 2 player game played on a one-
dimensional cellular field, as shown in Fig. 2 (field: 1–20).
The players are homogeneous except in their starting posi-
tions (left team: player 1 (field 8), player 2 (field 5); right
team: player 1 (field 13), player 2 (field 16)), and each player
makes a run, dribbles the ball, makes a shot at goal, or
passes the ball to a player of their own team. One of the
actions is decided on based on the relative locations of all
players and the ball (72 patterns). Action is taken in turn
between the 2 teams. Each step in the game is composed of
4 actions by all players.

Multiple players can not be in one cell. The ball is always
in a cell where a player resides. A moving action of a player
with the ball means dribbling. Players move to either of the
neighboring cells, but when a player moves to a cell with
another player, the neighboring player is skipped over (a
player cannot skip more than one other player). In this case,
if the players are in opposite teams and one of them has the
ball, the ball moves to the other player with a set probability
(Psteal). If there is an opponent player between the passer
and the receiver, the ball-passing becomes a failure with a
set probability (Pcut), and in this case the ball moves to the
cell where the oppenent player resides. The success rate for
shooting is antiproportional to the length between the
player’s position and the goal irrespective of the presence of
the opposing players. If a goal is scored, the game restarts
with the initial player locations. If there is a failure, the
game restarts after the ball is moved to the opposite player
nearer to the goal post.

We expect two types of altruistic behavior which could
lead to the emergence of cooperation in the game. One is

a 1 population

b R
   populations

d T  R
    populations

c T populations

Games

Fig. 1a–d. The four options for the population structure. a The popu-
lation represents all player roles in all teams. b Each population repre-
sents one player role in all teams. c Each population represents all
player roles in each team. d Each population represents one player role
in each team
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4 Evaluation

4.1 Expression of the players

Each player selects their next action deterministically based
on the positional relationship of the players and the ball. In
doing so, two opponents are not distinguished. So to be
precise, the genetic information of each player decides the
next action of that player based on one of 48 patterns,
where each pattern is associated with one of the four ac-
tions: running/dribbling to the right; running/dribbling to
the left; feeding (passing) the ball to a player of their own
team; taking a shot at goal. Therefore, each player is repre-
sented by 96 bits of genetic information.

4.2 Evaluation setting

The evaluation is conducted in two steps: an evolution step
and an evaluation step. In the evolution step, populations
are evolved for 2000 generations using 18 methods indepen-
dently. Each population has 40 individuals in all methods. A

G
O
A
L

G
O
A
L

Shooting
The success rate for shooting is 0.8l. 

Passing
 The success rate for ball-passing is
1 - (Pcut . number of opponent players). 

Moving/Dribbling
 If a player with an ball moves to
the cell with an opponent player,
he/she loses the ball with a
probability of Psteal. 

I

Fig. 2. The ultimately simplified soccer game

Table 1. Classification of the methods for evolving a team

Population structure Each genome represents Unit of fitness evaluation is Code name

Depends on Number of

T? R?
populations

A player
By direct evaluation 1–PHe–PD

A player
Heterogeneous players By indirect evaluation 1–PHe–PI

No 1
A team (same fitness in a team) 1–PHe–T

Homogeneous players A team (same fitness in a team) 1–PHo–T

No
A team

Fixed player-roles A team 1–TFi–T

Unfixed player-roles A team 1–TUn–T

A player
By direct evaluation R–PHe–PD

Yes R A player Heterogeneous players By indirect evaluation R–PHe–PI

A team (same fitness in a team) R–PHe–T

A player
By direct evaluation T–PHe–PD

A player
Heterogeneous players By indirect evaluation T–PHe–PI

No T
A team (same fitness in a team) T–PHe–T

Homogeneous players A team (same fitness in a team) T–PHo–T

Yes
A team

Fixed player-roles A team T–TFi–T

Unfixed player-roles A team T–TUn–T

A player
By direct evaluation TR–PHe–PD

Yes T · R A player Heterogeneous players By indirect evaluation TR–PHe–PI

A team (same fitness in a team) TR–PHe–T

T, number of teams in a game; R, number of player roles in a team

passing the ball to the other player in the same team instead
of dribbling the ball or taking a shot at the goal. The other
type is running in the direction away from the goal. The
former type of altruistic behavior is analyzed in Sect. 4.3.
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round-robin tournament of an ultimately simplified game of
200 steps is held to evaluate the fitness in each generation.

The parameters Psteal and Pcut are set to 0.8 and 0.4, re-
spectively, in both steps. These parameters were deter-
mined based on preliminary experiments mainly using
[T–Pho–T], [T–Tfi–T], and [TR–Phe–T]. The evolution of
the players depended significantly on both parameters. In
short, a large Psteal or a small Pcut evolved the passer-type
players. In contrast, a small Psteal or a large Pcut evolved the
dribbler-type players. We found that the above settings
could generate many different kinds of player.

With the <team-evaluated> option, the fitness is calcu-
lated as the number of goals the team scored minus the
number of goals the opponent team scored. With the
<direct-player-evaluated> option, the fitness is calculated as
the number of goals the player scored minus the opposing
team’s goals divided by 2. Then tournament selection
(repeatedly selecting the individuals with a higher fitness as
parents by comparing two randomly chosen individuals),
crossover with a 60% probability, and one-point mutation
with a 3% probability are adopted as genetic operators.
With the <indirect-player-evaluated> option, we use a
primitive player designed a priori as follows. When a player
keeps the ball, if they are behind the other team player they
pass the ball to the other player, otherwise they shoot.
When a player does not keep the ball, if they are behind the
other team player, they move back, otherwise they move
toward the goal. In the evaluation step, the best team is
selected in each of the last 50 generations in the evolution
step, and 50 × 18 selected teams conduct another round-
robin tournament of 1000 step games.

4.3 Evaluation results

Figure 3 shows the winning ratio of the teams evolved by 18
methods, each of which is the average winning ratio of the
best 10 teams from 50 teams in the all-play-all tournament
described above. Table 2 (the left-hand column in the re-
sults) also shows these results. Each pair of bars shows the
results of strategies with the same options in genome repre-
sentation and fitness evaluation except for the population

1/T-PHe-PD

1-PHo-T 

T-PHo-T 

1/T-PHe-PI 

1/T-PHe-T 

1/T-PHo-T

1/T-TFi-T

1/T-TUn-T

R/TR-PHe-PD

R/TR-PHe-PI 

R/TR-PHe-T

0.4 0.5 0.6 0.7 0.8

Table 2. Average winning ratio and assist ratio

Code name Results

Winning ratio Rank Assist ratio Rank

1–PHe–PD 0.673 7 0.146 15
1–PHe–PI 0.609 11 0.289 10
1–PHe–T 0.699 5 0.310 9
1–PHo–T 0.735 3 0.390 5
1–TFi–T 0.746 1 0.342 7
1–TUn–T 0.571 16 0.336 8
R–PHe–PD 0.607 12 0.109 16
R–PHe–PI 0.713 4 0.503 1
R–PHe–T 0.639 10 0.402 3

T–PHe–PD 0.574 15 0.080 17
T–PHe–PI 0.536 17 0.391 4
T–PHe–T 0.603 14 0.242 12
T–PHo–T 0.683 6 0.226 13
T–TFi–T 0.654 9 0.260 11
T–TUn–T 0.536 18 0.214 14
TR–PHe–PD 0.666 8 0.077 18
TR–PHe–PI 0.607 13 0.388 6
TR–PHe–T 0.741 2 0.416 2

Fig. 3. The average winning ratio of the best 10 teams evolved by each
of 18 methods

structure option (upper white bars, <1/R-population> op-
tions; lower black bars, <T/T · R-populations> options).

It can be seen that the top three methods in this evalua-
tion are <1-population, team-represented with fixed
playerroles, team-evaluated>, <T · R-population, heteroge-
neous-player-represented, team-evaluated>, and <1-popu-
lation, homogeneous-player-represented, team-evaluated>.
The winning ratios are 74.6%, 74.1%, and 73.5%, respec-
tively. An additional evaluation using a team consisting of
two primitive players showed that its winning ratio was
16.0%. This ratio could be a measure for the performance
of these methods.

Regarding the population structure, <1/R-populations>
options performed better than <T/T · R-populations> op-
tions in general. This might be because of ill-balanced evo-
lution, over-specialization, or circularity. The adoption of
an asymmetric game as a testbed would make this tendency
weaker. Regarding genome representation, the <homoge-
neous-player-represented> option performed well in gen-
eral. Also, the <team-represented with fixed player-roles>
option performed well, although the <team-represented
with unfixed player-roles> option performed badly. Re-
garding fitness evaluation, the <team-evaluated> option
performed well in general, as the fact that five of the top six
methods adopt this option has shown. The performance of
the <indirect-player-valuated> option depended largely on
the other options.

We observed an interesting separation of roles between
the two players in the teams with a high winning ratio. For
example, in some teams the forward player tended to play
near the goal and the backward player tended to move in
order to intercept the ball, and in some teams both players
seemed to use man-to-man defense.

Next, we examined the relationship between altruistic
behavior which could lead to cooperative behavior and the
winning ratio. Here we focus on the following behavior
pattern. A player with the ball passes to the other team
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player, who receives the ball without being intercepted and
then successfully shoots a goal immediately or after drib-
bling. We termed this series of actions an “assisted goal.”
Table 2 shows the assist ratio, which is the ratio of assisted
goals to all goals, and the winning ratio of the teams evolved
by 18 methods. We can see from this table that good per-
forming teams also have a tendency to have a high assist
ratio. In contrast, it is not necessarily the case that teams
with a high assist ratio have a tendency to have a high
winning ratio. This means that the assisting behavior de-
fined above is a necessary requirement for the teams to
perform well.

It is a remarkable fact that the <indirect-player-
evaluated> option made the assist ratio higher. In this op-
tion, we adopted a method in which the fitness of a player is
the decrease in the fitness of team when that player is re-
placed by a primitive player. This method should generate a
strong interaction between two players because it tends to
result in a large decrease in team fitness when a player is
replaced. Therefore, the teams generated by the indirect
evaluation method have a higher assist ratio despite having
a relatively low winning ratio.

5 Conclusion

This article has focused on methods for evolving a coopera-
tive team by conducting a comprehensive evaluation of 18
methods. We have found that some methods perform well,

while there are complex correlations among design deci-
sions. Also, further analysis has shown that cooperative
behavior can be evolved, and can be a necessary require-
ment for teams to perform well even in such a simple game.
Future work includes a more detailed analysis of coopera-
tive behavior, and an extension of the ultimately simplified
soccer game.
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