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Abstract

This paper investigates the evolution of
communication among autonomous robots in the
real world. A simple model has been constructed as
a first step, in which a population of artificial
organisms inhabits a lattice plane. Each organism
communicates information with neighbors by
uttering words. A common language typically
evolves. We have analyzed evolutionary dynamics
in this system, and have begun to implement it with
a population of small mobile robots.

1.0 Introduction

This paper reports on the current state of our efforts to generate
and evolve primitive "languages" in robots, allowing them
to perform various tasks more effectively, by sharing
information during social exchange. Section 2 describes the
construction of an inner image and the generation of a
primitive language between two artificial organisms, termed
LangEs, which are controlled by "associatrons,” a model of
associative memory with a neural network structure. Section
3 describes a model of language generation by evolution and
learning among a population of LangEs. Based on this model,
the results of preliminary experiments are described in Section
4, In Section 5, we discuss how we are attempting to apply
and extend the model to a real-world robots system, and
describe the current system. Section 6 summarizes the paper.

2.0 Language Learning between Two LangEs
2.1 World Image Construction

The human brain is able to self-organize in such a way that
it can hold relations among phenomena in the outer world.
When observing an object, the brain gives rise to a pattern
of excitation, corresponding to the attributes of that object.
One of the significant functions of the brain is to synthesize
and memorize pertinent stimulus patterns while at the same
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time maintaining the appropriate relations among them. The
relations stored in the brain’s memory make up a kind of
inner model of the outer world. We call this inner model a
"world image." For example, when a human sees and eats .
an apple, information sensed by a variety of receptors -- the

eyes, ears, and mouth -- is transformed to corresponding

stimulus patterns in the brain (Fig. 1). Upon hearing the "
word "apple," this sound is also transformed to a stimulus

pattern in the brain. Then the attributes of apples and the

word “apple" are associated and mutually recalled. From-a

simple input, the word "apple," a whole host of other attributes

of apples can be recalled. This model is consistent with’
recent studies of functional brain imaging in humans [1].

Whether or not correct in all its details, something similar to

this must underly memory.

Receptors
Hands

/ | Brain

Information Transformers (Associatron)

Fig. 1 Transformation of information.

We have constructed artificial organisms (LangEs) that
are able to construct such a kind of inner model of the outer
world in much the same way. The brains of LangEs are
realized by "associatrons,” a model of associative memory
based on simple neural networks proposed by Nakano [2].
These are similar to networks later analyzed by Kohonen
with “correlation matrices” [3]. Items to be memorized are
represented as n-dimensional vectors, whose elements take
the values -1, 0, or 1.

xiP) = (x,P), x,fP, .., %P, ..., x,”)"
where p is the index of the items, and ¢ denotes transposition.
Items are memorized as the sum of the auto-correlation
matrices of the vectors, that is,
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k
M= Xx.xer
p=l

Memorized vectors are recalled by
z =sgn(sgn(M) - x)
where sgn(u) is a threshold function, defined as

sgn(u)= -1 ifu<0,
0 fu=0,
1 ifu>0

In the event that this function is applied to matrices or vectors,
the above operation is carried out for each element of matrix
or vector. If most elements of input vector x' are equal to the
corresponding elements of x, and the rest are Os, then the
recalled vector z will be similar or equal to x. This means
that the associatron can recall the entire memorized pattern
from only part of it.

This function can be implemented with a mutually-
connected neural network [2][3]. Using the nomenclature of
Nakano [2], an associatron is composed of "neurons” which
correspond to the elements of an item vector. Individual
neurons are connected to one another in pairs. When an
input pattern is fed in and the resulting excitation pattern
arises in this neural network, the synaptic weights are
increased by the products of input values of neurons on both
sides of the synapse. At the same time, individual neurons
stimulate other neurons through synaptic connections. The
stimulation strength is the product of the output from the
neuron and the quantized value of synaptic weight (1, O, or
-1, according to the value, plus, zero, or minus, respectively).
Each neuron takes a 1, 0, or -1 value by majority decision;
that is, it takes 1 if there are more stimuli Is than -1s, and it
takes -1 if there are more -1s than 1s,

2.2 Environment for Language Generation

Suppose that LangEs have been fully trained on the items to
be discriminated, Then suppose the LangE senses an object,
so that an excitation arises in the LangE's brain, corresponding
to the attributes of that object. For example, when a LangE
meets a lion, the composition of stimulus patterns which
correspond to the attributes of the lion -- "brown," "with
hair," and "big" -- may arise in its brain. When the LangE
encounters a rabbit, the composition of stimulus patterns of
its attributes -- "white," "with hair," and "with long ears" --
arises in the same way. Suppose further, that the same part
of the stimulus pattern is active for the same attribute. For
example, upon sighting a lion or rabbit, the attribute "with
hair" excites the same state in the same position of the stimulus
pattern. By taking the intersections of the stimulus patterns,
it is possible to extract the attribute "with hair."” This operation
is available through the random stimulation of attributes to
the associatron, Objects and attributes extracted by random
stimulation are treated in the same manner and memorized
as concepts. At the same time, names are given to them.

It might appear that attributes are all defined a priori, so
that LangEs give only one-to-one correspondences between
the exciting patterns and names. This is not, however, the
case. Consider the following example: A lion has attributes
"brown," "with hair" and "dangerous," and a bear has attributes
"black," "with hair," and "dangerous." Then, the common
attributes for the two objects are "dangerous and with hair."
This is regarded as one concept, because if no other objects
were to exist in the world, both of the attributes would never
be discriminated between.

When two LangEs recognize an object, they recall the
concepts in relation to the object expressed by the stimulus
patterns in their world images. They then recall words from

- the concepts and speak them to each other. Only words

corresponding to concepts are treated in this study, in order
to initially avoid the complication of syntax. At the beginning
of the experiment, words corresponding to objects are
determined randomly and independently, so two LangEs
would generally have different words for the same objects.
Because they shared a common experience, each LangE feeds
the association of the words which the other LangE says and
the concepts which it recalls for itself, into the associatron.
Through repetition, the words of two LangEs corresponding
to the same objects or the same attributes will gradually
become similar, and finally become identical. Then when
one LangE hears the words the other LangE utters, it can
recall the same concepts in its brain that the other recalls. At
this stage, they share their world images through the medium
of words. It can be said that a primitive language has been
generated by the two LangEs, in some ways similar to pidgin.

3.0 Language Evolution among a Population
of LangEs

3.1 Environment and Conversation

Let us enlarge the scope of the model above, and explore
how language might evolve in an artificial world in which
many LangEs reside and repeatedly produce offspring [4].
Suppose that LangEs are placed in a two-dimensional toroidal
grid, and cannot move out of their location. Each LangE is
able to construct its own world image through its associatron.
Stimulus patterns which have been fed into the associatron
consist of both the patterns for a set of objects and the
names given to those objects and/or concepts. Each LangE
L; (i and j denote the location in the grid plane) has, as its
internal values indicating its state, the scores P;, the age A,
an inborn value GA; related to the selection pressure, and
the cross-correlation matrix M; which is the phenotype of,
and initially equals, the inborn matrix GM;.

Suppose a LangE in some location and its surrounding
eight neighbors have a common experience by observing an
object, recalling the words for it, speaking them to each
other, and feeding into the associatron memory the association
of the words spoken by other LangEs and the patterns for
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the object. Assume that only one-to-one conversations are
held between the LangE in the location of the object and its
eight immediate neighbors. When the words spoken by another
LangE matche the words the focal LangE speaks, both are
rewarded with some value g, which is added to their scores,
P; When the words spoken by a pair of LangEs are not the
same, then g is subtracted from the scores of both. When a
conversation has been established in this way, then an object
may be observed by only one LangE, which transmits
information through words alone, prompting the other LangE
to recall the full stimulus pattern corresponding of the object
which it has not, itself, observed.

3.2 Alternation of Generations

The ability to communicate through language can be evolved.
One way to accomplish this is as follows: First, an initial
random population is created in the environment. A location
to be the center of conversations and an object to be observed,
by the nine around it, are randomly selected. The LangEs in
a neighborhood then hold eight one-to-one conversations;
these will cause learning by the neural networks. Then another
location and another object are selected, and the conversations
are held again. And so on. Every lattice point is selected to
be the center of conversation one time. Next, a LangE is
removed, according to a probability, and an offspring is
created at the location of the removed LangE. The probability
of the LangE at ij to die is Select(A; Py, GA;),

Select(A;, P, GA;) =

1/7{1+exp(-s*(A;-c*Py)/GA;-1))},
where ¢ and s are chosen to be positive constants. This is
calculated on each LangE independently at every turn-around.
When a LangE dies and is removed from the grid, then an
offspring is produced at that location, thus keeping the overall
population size stable. The parents for the replacement are
found by first selecting a pair of LangEs from the eight
neighbors, in proportion to the following weights:

Parent(Py) = ®(Py)* / ZIP,)

li-kl <= I, lj-ll <= ]
where @(x) equals x (if x>0) or 0 (if x<=0). Mated genome
strings cross over at randomly-selected crossing sites.
Inheritance is Mendelian, rather than Lamarckian; which is
to say that the information passed to the next generation
comes not from the learned matrices M, but from the inborn
matrices GM ;. Mated genome strings cross over, and mutation
is performed on a bit-by-bit basis, with some probability.
The age A; and the score P of the offspring are set to be
zero when the new LangE is created.
These processes -- conversations, selection, replacement

-- are repeated again and again. We will refer to the passage
of time for one repetition as one year.
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4.0 Preliminary Experiment
4.1 Conditions and Measurements

We have conducted some preliminary experiments similar
to those described in the previous section. The size of the
environment was 5 x 5, containing 25 LangEs. The length of
the input/output field of each associatron was 55 bits, of
which 50 bits were for the object patterns, and 5 bits were
for the corresponding words. There were six objects to be
recognized, the reward or penalty, g, was 1; and the mutation
probability, e, was 1/10. In Select(), c = 1 and 5 = 5. GA;
and the elements of GM; for the initial population were
assigned randomly from the interval 100<=GA;<=300, and
-5<=GM,(x,y)<=5, respectively. Six measurements were
defined for analyzing the results of experiments. The average
for each measurement was calculated for all LangEs for
every 100 years. Life expectancy is the average age of a
LangE when it dies. Selection pressure (=GA;) is the inherited
parameter used in Selection(). The higher the selection
pressure, the less likely the LangE is to die. Learn length is
the average age of a LangE when each name given by that
LangE and the names given by more than three neighbors
become coincident, that is, the average age when the LangE -
shares a vocabulary with more than three neighbors. Genome
level is the average number of surrounding LangEs which
have the same vocabulary as that of the newborn LangE.
Language coincidence is the average rewarded score per
year -- the maximum is 16, when 8 as a center and 8 times 1
as a neighbor, and the minimum is -16. Language unity
means that all of the LangEs share an identical vocabulary;
that is, each object is given its own unique name by all of
the LangEs in the population. Language transition is the
number of times one language unity is destroyed and replaced
by another. When the language transition converges to some
value other than zero, then the language will change
continuously.

4.2 Evolutionary Dynamics

The results are shown in Fig. 2 and Fig. 3. Language
coincidence shows a tendency to increase; in other words,
the scores acquired by LangEs increase through evolution,
as expected. Life expectancy and selection pressure also
increase during an initial stage, and then show a tendency to
converge. Genome level is negatively correlated with learn
length because in general, the higher the genomelevel the
less need there is to learn. Thisis apparent from the figures.
It is also found that genome level was correlated with language
coincidence. Learn length shows a single peak, and then
decreases. The cause of the decrease seems to be that it
becomes easier to learn as more of the language is shared.

It is interesting that language transition does not converge
to zero. This is because of the rapid alternation of generations.
Fig. 4 shows one instance where there was a transition of
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the word used for the name for an object by all 25 LangEs.
For this illustration each name is represented by a letter of
the alphabet for simplicity, though it was actually a 5-bit
binary string in the experiments. First, the word “J" for the
objects is shared by all LangEs. Then, another word, "K"
arises and spreads, generate two dialects, "J" and "K.," over
different regions. The accumulation of mutation, propagation
delay and the effects of inheritance produce very complex
dynamics, while learning by the associatron and selection of
parents have large effects on language unification.
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5.0 LangE Model on a Robots System
5.1 Direction

We are now investigating the evolution of communication
among the autonomous robots in the real world, based on
the foregoing model for the evolution of communication. Is
it possible for autonomous robots that have self-organizing
brains to extract sensation patterns from their various sensor
inputs, and then to give them commonly understood meanings
that permit them to communicate effectively? Is it possible
for them to allocate various tasks dynamically, and then to
cooperate among themselves? It will be necessary to address
several issues:

1) Motivation for communication

If the robots can acquire enough information on other
robots by modeling their world internally, then their
communication requirements will be correspondingly
decreased. Therefore, it is important for the models of evolving
communication to consider the motivation for that
communication. All of the outputs, including message
sending, should be subject to evolution and autonomously
defined in our robots, to the extent that even silent robots
should be permitted.

2) Simulation and physical realization

It is very difficult and may take as much time for detailed
simulations as it would take to build the actual robots. At
the same time, it is also impractical to build and observe
many actual robots during many generations. Therefore, we
plan to adopt a hybrid simulated/embodied selection regime
[5]. Large numbers of simulated robots are examined in
simulation, but only the promising subset of these are actually
built and examined, thereby reducing the scope of the problem.

3) Task allocation and information transfer

It is important for robots be able to switch tasks
autonomously, based both on environmental stimuli and on
their interactions with other robots. The information which
is exchanged among robots is likely to depend on the
complexity of tasks in which the robots are engaged. Several
encouraging results are described in [6], which suggest that
very simple mechanistic interactions between individuals are
sufficient to allow the colony to maximize food intake and
other quantities related to fitness,
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5.2 Current Robots System

At the UCLA Commotion Laboratory, several projects are
under way that study issues pertaining future robotic platforms
[7]). The system available to us consists of ten R3 robots
from IS Robotics Inc. and an 8 meter x 7 meter arena which
has been set aside for remote experimentation. The R3 is a
small, autonomous mobile robot about 40 cm both in diameter
and in height. Each of the robot has been outfitted with a
Linux operating system running on 486/DX2 processors. The
sensor array of the robot includes infrared proximity sensors,
bump sensors, shaft encoders, and power status indicators.
The robot moves using a differential drive and can manipulate
objects using a force-sensing gripper subsystem. A pair of
Proxim radio modems is dedicated as a wireless serial link
between each R3 and its basestation. We believe that this
system, which is still in early stages of implementation, is
well suited to our needs.

6.0 Conclusion

It is important to put the various abstract results from artificial
life research into the real world. This paper investigates the
evolution of communication among autonomous robots. A
simple model has been constructed as a first step, in which a
population of artificial organisms inhabits a lattice plane and
each repeats communicating information with neighbors by
uttering words. The model has been implemented, we have
analyzed its evolutionary dynamics, and have begun to
implement it with a population of small mobile robots.
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