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Abstract— The Baldwin effect is known as a possible scenario
of interactions between evolution and learning caused by the bal-
ances between benefit and cost of learning. It is still controversial
how learning can affect evolution on rugged fitness landscapes
because previous studies merely focused on a process in which the
population reaches a local optimum through a single occurrence
of this effect, even though there exist a lot of local optimums
on the landscape. Our purpose is to clarify whether and how
learning can facilitate the adaptive evolution of population on
rugged fitness landscapes in view of the repeated occurrences
of the Baldwin effect. For this purpose, we constructed a simple
fitness function that represents a multi-modal fitness landscape in
which there is a trade-off between the adaptivity of individual and
the strength of the epistatic interactions among its phenotypes.
Phenotypic plasticity is introduced into our model, in which
whether each phenotype is plastic or not is genetically defined and
plastic phenotypes can be adjusted by learning. The evolutionary
experiments clearly showed that the Baldwin effect repeatedly
occurred through the evolutionary process of the population on
this landscape, and facilitated its adaptive evolution as a whole.

I. INTRODUCTION

Evolution and learning are different adaptive mechanisms
that occur on different levels (population or individual) in
biological populations. There have been various discussions on
effects of learning on the course of evolution. Especially, the
Baldwin effect [1] is known as a possible scenario caused by
interactions between both mechanisms [2]. This effect explains
these interactions by paying attention to balances between
benefit and cost of learning through the following two steps
[3]. In the first step, lifetime learning gives individual agents
chances to change their phenotypes. If the learned traits are
beneficial for agents and make their fitness increase, they
will spread in the next population. In the second step, if the
environment is sufficiently stable, the evolutionary path finds
innate traits that can replace learned traits, because of the cost
of learning. This step is known as genetic assimilation [4].
Through these steps, learning can guide the genetic acquisition
of learned traits without the Lamarckian mechanism in general.

A fitness landscape is often used so as to visualize and
intuitively understand evolutionary dynamics of the popula-
tion. The height of the landscape is the fitness value of the
corresponding genotype (phenotype) on a possible genetic
(phenotypic) space, and the adaptive evolution of the popula-
tion corresponds to a hill-climbing process on the landscape. A
well-known effect of learning on the fitness landscape is that
learning smoothes the rugged fitness landscape by allowing the
population to explore neighboring regions of phenotypic space.
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Fig. 1. An example of the smoothed fitness landscape after learning process.
The slope of the fitness landscape is (a) increased or (b) decreased after
learning process.

Hinton and Nowlan’s pioneering work on the Baldwin effect
[5] assumed the evolution of the population on a “needle in
a haystack” fitness landscape, which is typically illustrated in
Fig. 1. By introducing the quantitative evolution of phenotypic
plasticity into a simple genetic algorithm, they showed that this
effect of learning can guide the evolution of the population
toward the spike by increasing the slope of the surface around
it (Fig. 1 (a)).

It is also known that learning can bring about a negative
effect on the evolution of population. Mayley conducted an
evolutionary experiment using Kauffman’s NK fitness land-
scape [6]. He adopted a learning process that searches for
an adaptive phenotype in neighboring phenotypes. He pointed
out that if the learning process enables the individuals with
different innate phenotypes to obtain the same adaptive trait,
the ability of the selection to discriminate between them is
reduced. Such a negative effect of learning, termed hiding
effect, corresponds to the decrease in the slope of the surface
around the spike (Fig. 1 (b)). Recently, Paenke et al. derived
the conditions for the occurrences of these two opposite effects
of learning by applying the selection gradient analysis to
simple uni-modal fitness functions [7].

Epistatic interactions among loci, which are ubiquitous in
modern genetics and evolutionary biology [8], can bring about
strong effects on the Baldwin effect. Mayley pointed out that
there should be a neighborhood correlation between genotype
and phenotype space to guarantee a genetic assimilation to
occur [9]. Watson et al. also showed the tendency of genetic
assimilation to occur increases as the complexity of the learn-
ing task decreases and the environmental stability increases
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1: search in every direction

2: directed search for a peak

    caused by epistatic interactions among loci 

3: genetic assimilation

initial population
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Fig. 2. Three-step evolution through the Baldwin effect observed in [12].
The initial population existed on the black filled circle on the right hand. The
gray region around it represents the potential area where the current population
can reach through learning. Their experiments suggest that the role of learning
changes as follows: 1) The learning in many phenotypes allows the population
to search adaptive phenotypes in every direction on the phenotypic space
owing to the benefit of learning. 2) If epistasis limits the maximum size of the
potential area, the simultaneous learning with smaller number of phenotypes
enables the population to get to more adaptive phenotypic combinations by
transforming the shape of the potential area. 3) The learning guides the genetic
combination to approach the maximum because of the cost of learning.

[10]. Recently, Suzuki and Arita constructed an evolutionary
model of quantitative and plastic traits with epistasis by using
an extended version of Kauffman’s NK fitness landscape
[11], [12]. They found that epistatic interactions among loci
during learning process caused three-step evolution through
the Baldwin effect, which includes the evolution of a more
directed search mechanism caused by the reduction of residual
phenotypic plasticity. The dynamic changes in roles of learning
were conceptualized by using a hill-climbing image of a
population and change in the searchable area through learning
process on a fitness landscape as shown in Fig. 2.

Previous discussions above mainly focused on the process
in which the population reaches a peak of the fitness through a
single occurrence of the Baldwin effect. However, such a peak
is not always the global optimum when the fitness landscape
is rugged because there are a lot of local optimums on the
landscape. In this case, we can suppose a further scenario
in which the population reached a local peak through the
Baldwin effect can subsequently move toward more adaptive
peak through another occurrence of the Baldwin effect. Mills
and Watson reported that learning enables the population to
cross valleys on the fitness landscape if the benefit of learning
is sufficient [13]. Thus, we can expect that the population
acquires more and more adaptive phenotypes through repeated
occurrences of the Baldwin effect. That is, the increase and
subsequent decrease in the phenotypic plasticity through the
Baldwin effect is expected to create a scaffold for a further
adaptive evolution through another Baldwin effect.

Our purpose is to clarify whether and how learning can
facilitate the adaptive evolution of population on rugged fitness
landscapes in view of the repeated occurrences of the Baldwin
effect. Especially, we focus on how these processes can
facilitate the adaptive evolution of the population depending on
the state of the population on the rugged fitness landscape such
as the degree of epistasis. For this purpose, we constructed
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Fig. 3. An example of genetic representation and traits (M=10).

a simple fitness landscape model that represents a multi-
modal fitness function in which there is a trade-off between
the adaptivity of individual and the strength of the epistatic
interactions among its phenotypes. Phenotypic plasticity is
introduced into our model, in which whether each phenotype is
plastic or not is genetically defined and plastic phenotypes can
be adjusted by learning. The evolutionary experiments clearly
showed that the Baldwin effect repeatedly occurred through
the hill-climbing process of the population on the multi-modal
landscape, and facilitated the evolution of the population as a
whole.

II. MODEL

A. A multi-modal fitness function

There are N individuals in a population and each individual
has M traits as shown in Fig. 3. Each gene gi (i=0, · · ·, M -1)
in a M -length chromosome GI represents the initial value of
the corresponding trait ti (i=0, · · ·, M -1) which consists of an
integer value within the range [1, M ].

So as to evaluate the fitness of individual, we adopted a
simple fitness function defined as follows:

fitness = arg max(f(n)), (1)

f(n) =
{

n if num(n) ≥ n,
0 otherwise,

(2)

where num(n) is the number of traits of which phenotypic
value is n. This function represents a situation as follows: All
traits of the individual are divided into several groups each in
which the phenotypic values are identical. The trait group of
n becomes adaptive and yields the fitness value n if its group
size (num(n)) is greater than or equals to n. The fitness of
individual is taken as the highest fitness value among adaptive
trait groups. Figure 3 shows an example of the fitness of an
individual. The trait group of 2 and 4 satisfied the condition
num(n) ≥ n, and the actual fitness of the individual becomes
4 in this case.

Eq. (2) shows that the higher the fitness of a trait group is,
the larger its minimum size that is needed for its adaptivity to
express becomes. The increase in the minimum size means that
such a group becomes difficult to be acquired because it needs
epistatic interactions with larger number of phenotypes. Thus,
there is a trade-off between the adaptivity of the trait groups
and their degree of epistatic interactions. In addition, as the
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fitness

average phenotypic value

Fig. 4. A rough image of the fitness landscape. The horizontal axis
corresponds to the average phenotypic value among all phenotypes. Each peak
(in gray) corresponds to the fitness which can be acquired when each trait
group becomes adaptive. The black line is the actual fitness of the population.
As the fitness of the population increases, it tends to need to cross the valley
to reach the next optimum.

fitness of individual becomes larger, it becomes difficult for it
to acquire larger fitness without decreasing the current fitness
temporarily. As the size of the current adaptive trait groups
n increases, it becomes difficult to satisfy both condition
num(n) ≥ n and num(n + 1) ≥ n + 1 at the same time,
because of the limitation of the total number of phenotypes
M . To be exact, it is impossible to satisfy both conditions
above when n > N/2. In this sense, there exist valleys on
this fitness landscape as roughly illustrated in Fig. 4.

B. Learning

Each individual has another M -length chromosome GP
which decides whether the corresponding phenotype of GI
is plastic (“1”) or not (“0”) as shown in Fig. 3. Each trait
whose corresponding bit in GP equals to “1” can be changed
through lifetime learning procedures as follows: First, each
individual calculates the innate fitness which is determined
by initial phenotypic values gi. Then, each individual iterates
the learning processes for L time steps. For each step l, the
individual evaluates its own traits ti all of which phenotypic
values are determined by the equation as follows:

ti =
{

gi + rand() if pi = 1,
gi otherwise,

(3)

where rand() is the function that returns a randomly selected
value from {-1, 0, 1}. Note that, if a generated phenotypic
value exceeds its domain, another randomly selected value is
added to the initial value. This equation shows that the values
of plastic traits can slightly deviate from their genetically
specified values for each step.

The fitness of the individual at time step l is the highest
value of the fitness among previously evaluated l fitness values
and the innate fitness. It means that the individual evaluates a
set of generated phenotypes, and then adopts the most adaptive
traits so far. The lifetime fitness of the individuals is the
average among L fitness values evaluated during its learning
period and its innate fitness.

C. Evolution

After all individuals have finished their learning processes
described above, the offsprings in the next generation is
selected by the “roulette wheel selection” (in which the
probability that an individual will be chosen as an offspring is
proportional to its fitness) from the current population. Then,
every gene of all offsprings is mutated with a probability pmi

for GI and pmp for GP respectively. A mutation in GI adds
a randomly selected value from {-1, 1} to the current value.
If a generated value exceeds its domain, another mutation is
operated on the original value again. A mutation in GP flips
the current binary value.

III. EXPERIMENTS

We conducted evolutionary experiments using the following
parameters: N=400, M=12, pmi=0.002 and pmp=0.005. The
initial population was generated on condition that initial values
in GI were 1 and the genetic values in GP were randomly
decided. We adopted this initial condition so as to observe
the hill-climbing process of the population from around the
bottom of the fitness landscape.

A. Experiments without learning

First, we conducted experiments without learning process
(L=0). Figure 5 shows a typical example of the evolution
of innate fitness over 15000 generations. The horizontal axis
represents the generation, and the line shows the average innate
fitness among all individuals. In this case, the innate fitness is
the same as the lifetime fitness.

Starting from the initial population of which the innate
fitness was a very small value 1.0, we observed several
rapid increases in the innate fitness. Each increase occurred
when more adaptive individuals, whose adaptive trait group
consisted of n+1, appeared by mutations and rapidly occupied
the current population in which the individuals’ adaptive trait
group consisted of n (n ≥ 1). We also see that the intervals
between these rapid increases became longer as the innate
fitness increased. It reflects that the more adaptive a trait group
is the more difficult it becomes to be acquired by mutations
only.

The innate fitness reached the moderate value 6.0 until
around 6200th generation, and it converged and never ex-
ceeded 6.0 in the case without learning. It is due to the fact
that the population could not obtain a more adaptive trait group
without discarding the current adaptive trait group as its fitness
increases. All the other trials with the same condition also
showed the similar evolutionary dynamics except for small
differences in the timing of the rapid increase in the innate
fitness.

B. Experiments with learning

1) Repeated occurrences of the Baldwin effect: Next, we
conducted experiments with learning process. Figure 6 and
7 show a typical example of the trial in case of L=100. In
addition to the innate fitness and lifetime fitness, the phenotypic
plasticity represents the average proportion of “1” in GP .
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Fig. 5. Evolutionary dynamics of fitness when L=0.

The plasticity contribution also represents the proportion of
plastic phenotypes which actually contributed to the increase
in the fitness of individual. Specifically, for each individual, we
counted the number of modified traits in the most adaptive trait
group which was first acquired through learning processes as
shown in Fig. 3, then divided it by the number of plastic traits
of the individual. We adopted this index in order to measure
how phenotypic plasticity actually contributed to acquisition of
the adaptive traits through learning. These indices are averages
among all individuals in each generation.

These graphs clearly show that the Baldwin effect occured
repeatedly through generations. We can roughly grasp the
evolutionary dynamics by focusing on the transition of the
differences between the lifetime fitness and the innate fitness.
As shown in Fig. 6, we see that this difference repeated the
increasing and subsequently decreasing processes, and each
process corresponds to an occurrence of the Baldwin effect.
The increase in this difference corresponds to the first step
of the Baldwin effect in that the population was getting much
dependant on the learning process to acquire higher fitness. Its
decrease also corresponds to the second step of the Baldwin
effect because the innate fitness increased and finally caught
up with the lifetime fitness, and thus, the genetic assimilation
occurred.

Here, take the evolution of the population from around
4300th to 6000th generation for example. Around the 4300th
generation, the lifetime fitness is almost 6.0 and the average
innate fitness almost the same or slightly smaller than the
lifetime fitness. It shows that most individuals innately pos-
sessed an adaptive trait group of 6 by satisfying the condition
num(6) ≥ 6. The phenotypic plasticity fluctuated around 0.5
that is the expected value when there is no selection pressure
on the phenotypic plasticity. Also, the plasticity contribution
is quite small (about 0.05). These mean that the population
was not dependant on the learning process.

From the 4700th generation, the lifetime fitness began
to gradually increase to 7.0. The innate fitness gradually
decreased until around the 5500th generation. At the same

time, the phenotypic plasticity increased to around 0.7 and
the plasticity contribution also became about 0.5. This process
shows the occurrence of the first step of the Baldwin effect
because more plastic individuals could obtain higher fitness
and could occupy the population due to the acquisition of more
adaptive trait group by satisfying the condition num(7) ≥ 7
through learning process.

Subsequently, the innate fitness began to increase and
approached to the lifetime fitness until about the 6000th
generation. We can say that the second step of the Baldwin
effect occurred during this period. In this case, the number of
innate traits of 7 increased and finally satisfied the condition
num(7) ≥ 7 innately, which was satisfied through learning
process in the first step. Such genetic assimilation occurred
because that the lifetime fitness is defined as the average fitness
over all learning processes in this model.

After that, the evolutionary dynamics became stable for
a thousand generations, and then another first step of the
Baldwin effect started around the 7300th generation in this
case. This is because that the innately acquired adaptive trait
group of 7 enabled the individuals to acquire more adaptive
trait group of 8 through learning processes because the value
of plastic traits could be increased or decreased from the innate
value only by 1. In this sense, we can say that the result of
the Baldwin effect became the scaffold for the next Baldwin
effect to occur.

As a whole, the innate and lifetime fitness finally reached
almost 8.0, which is larger than the previous case without
learning (6.0). It means that the repeated occurrences of the
Baldwin effect enabled the population to reach higher peak on
this rugged fitness landscape.

2) The effects of epistasis on the Baldwin effect: The
evolutionary scenarios occurred through each Baldwin effect
were basically similar to the case explained in the previous
section. Furthermore, we also observed several differences
between them, which were caused by the gradual increase
in the epistasis of adaptive trait group that was going to be
acquired by learning process. The first thing we notice is that
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Fig. 6. Evolutionary dynamics of fitness when L=100.
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Fig. 7. Evolutionary dynamics of plasticity when L=100.

the Baldwin effect continuously occurred without interval until
the 2000th generation. The first step of the Baldwin effect
occurred before or immediate after the end of the second
step in the previous Baldwin effect as observed around the
400th and 1000th generation. This is because that if the innate
fitness is relatively small, the epistasis of the adaptive trait
group which is needed to be acquired by learning process
is also small. Thus, the individuals can quickly find more
adaptive trait group if the genetic assimilation almost finished.
Oppositely, as the innate fitness increases, it takes longer
generations for the next first step to occur, and there were
stable periods between them as shown around the 2000th,
4300th and 6500th generation.

The second thing is that the innate fitness temporarily
decreased through the Baldwin effect when the fitness of the
population is relatively high. We see such decreases around the
3500th, 5500th and 12700th generation. These clearly show
that learning enabled the population to cross the valley on the
landscape of the innate fitness. As explained before, it becomes
difficult for the individual to acquire more adaptive trait group
without discarding the current adaptive trait group as its fitness

increases. However, if changes in the innate traits contribute
to the acquisition of more adaptive trait group during learning
process, such changes can invade the population even if they
decrease the innate fitness. Actually, the change in the values
of the innate phenotypes from 6 to 7 occurred around the
5500th generation.

The last thing we found is the occurrence of the three-step
evolution through the Baldwin effect when the fitness of the
population was relatively high. We observe the long term oc-
currence of the first step of the Baldwin effect from the 7200th
to 12500th generation. During this period, we see the slight
decrease toward around 0.6 in the phenotypic plasticity that
once exceeded 0.7 at the beginning the first step. At the same
time, we also see that the plasticity contribution increased from
0.4 to 0.6. The transition of these two indices indicates that
learning process became more directed by decreasing residual
phenotypic plasticity. Thus, this process corresponds to the
second step in the three-step evolution through the Baldwin
effect [12].
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C. Quantitative analyses on genetic acquisition of the adap-
tive phenotypes

Finally, we conducted the quantitative analyses on the
effects of learning process on the genetic acquisition of
the adaptive phenotypes, so as to understand how repeated
occurrences of the Baldwin effect facilitated the adaptive
evolution in detail. Fig. 8 shows the increasing speed of the
average innate fitness in the cases with or without learning.
The horizontal axis represents the average innate fitness, and
the vertical axis shows the generation at which the innate
fitness exceeded the corresponding fitness value. For each case
with / without learning, the results are averages over 15 trials1

conducted for 30000 generations respectively.
From this figure, when the innate fitness was smaller than

3.0, the population with learning took longer generations
to acquire innate adaptive phenotypes compared with the
population without learning. For example, the population with
learning needed about 350 generations to increase its innate
fitness to around 3.0, while the population without learning
needed about 170 generations only. During this period, the
adaptive trait group can be acquired easily with evolution
only as shown in Fig. 5. Thus, the introduction of learning
rather decreases the increasing speed of the innate fitness.
This corresponds to the Mayley’s hiding effect of learning [6]
explained before.

Oppositely, as the innate fitness became larger, the pop-
ulation without learning took longer generations to acquire
adaptive phenotypes until the innate fitness reached around 6.0.
For example, the population without learning needed about
11100 generations to increase its innate fitness to around
6.0, while the population with learning needed about 3500
generations only. This phenomenon corresponds to the Hinton
and Nowlan’s guiding effect [5] in that learning facilitated the
genetic acquisition of adaptive traits. Furthermore, the pop-
ulation with learning successfully increased its innate fitness
to almost 8.0 until 16000th generation, while the population
without learning never reached because it finally got stuck on
the local optimum. This phenomenon corresponds to Mills and
Watson’s crossing valley process [13].

In addition, we conducted additional experiments with vari-
ous settings of the number of learning iterations L. The results
showed that the effects of learning described above became
strong as L increased. For example, when L=200, the fitness
of the population slowly increased due to the hiding effect in
comparison with the cases with L=100. Instead, it successfully
reached more adaptive value 9.0 in several trials due to the
guiding effect of learning. Oppsitely, when L=10, the fitness
of the population rapidly increased but it converged to 7.0 in
most trials.

These results clearly show that whether the Baldwin effect
facilitates evolution or not strongly depends on the environ-

1Actually, we conducted 20 trials with and without learning respectively.
We found that a few trials in which the average fitness did not reach 7.95
in the former case and 5.95 in the latter within 30000 generations. Then, we
excluded these exceptional trials and randomly picked up 15 trials for each
case.
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Fig. 8. The increasing speed of the innate fitness. Note that the innate fitness
never reached 6.95 in the cases without learning.

mental condition in which the population exists. In this model,
the epistasis of adaptive phenotypes is an important factor
which decides whether learning can guide or hide evolution.

IV. CONLUSION

There have been many discussions on the effects of learning
on evolution such as the Baldwin effect, and various interpreta-
tions about roles of learning were proposed recently. However,
previous studies mainly focused on a single occurrence of
the Baldwin effect, which corresponds to the hill-climbing
process of the population toward a local minimum if the fitness
landscape is rugged.

We constructed a simple fitness landscape model that repre-
sents a multi-modal fitness function in which there is a trade-
off between the adaptivity of phenotypes and the strength
of the epistatic interactions among them. The evolutionary
experiments with / without learning process clearly showed
that the Baldwin effect can occur many times through the
course of evolution on such a rugged fitness landscape. It
should be emphasized that each occurrence of the Baldwin
effect has a role of creating a scaffold for another Baldwin
effect to occur. However, whether it actually guides the genetic
evolution or not depends on the degree of epistasis. If it is
difficult for the population to acquire the adaptive phenotypes
simply with evolution due to the strong epistasis among
adaptive phenotypes, learning can guide evolution by creating
the selection pressure toward more adaptive phenotypes. This
also enables the population to cross valleys on the innate
fitness landscape. Otherwise, learning can hide evolution by
decreasing the selection pressure on the innately adaptive
phenotypes, and prevents another Baldwin effect to occur.
Also, we found the three-step evolution through the Baldwin
effect was observed when the degree of the epistasis was large.

Future work includes analyses with other types of rugged
fitness landscapes.
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