2L-05 リカレントネットワークによる言語の発生モデル

木村 友海 名古屋大学情報文化学部4年

1. 概要

言語の発生と進化という未解明の問題に関して、 我々は言語それ自体を創発システムと見做し、様々 な複雑系的アプローチによって挑んでいる[1]。本稿 では、語彙と属性の研究[2]について、シンプルなエ ルマンネットワークを持ったエージェント群の相互 作用によって言語が発生するという Batali のメカ ニズム[3]を用い、シミュレーションを行っている。 その結果、様々なパターンに対応した語彙、そして 文法的な規則性が生まれた。

2. モデルの設定

2.a 属性パターンと事物パターン

人間が外界の事物を認識するとき、脳では事物の 持つ属性に応じた興奮パターンが発生する。共通す る属性は各事物にまたがって共有されると考えられ る。従って、ある事物に対応した脳内の興奮パター ンは、属性に対応したパターンの組み合わせによっ て表現できると考えられる。

この実験においては、ある「意味」を示す bit 列のバイナリパターンを上位 10bit、下位 20bit に分けている。上位 bit は 10 の属性パターンからランダムに 2 つを選択し、重ねあわせて事物パターンを作る。下位 bit は 10 パターンからランダムに選択した 1 つをそのまま事物パターンとする。ここで仮に、下位 bit を主語、上位 bit を述語と呼ぶ。

表 1 上位 bit の構成方法

属性 1	0	1	0	0	1	1	0	0	0
属性 2	1	1	0	1	0	0	0	0	1
事物 (1+2)	1	1	0	1	1	1	0	0	1

Emergence of language with re-current networks Tomomi Kimura and Takaya Arita, Nagoya Univ.

有田 隆也 名古屋大学大学院人間情報学研究科

2.b エージェントの設計

各エージェントはエルマンネットワークと呼ばれるニューラルネット[4]を持つ。図1はシミュレーションで使用しているネットワークの構成である。

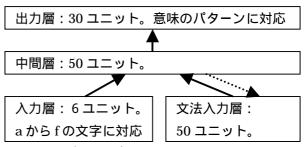


図 1・各エージェントのニューラルネット

エージェントが言葉を発する時は、ネットワーク の入力層に一文字ずつ文字を入れて処理し、表現す べき意味のパターンと出力層の状態を比較して、最 も適した文字を選択し、聞き手に送る。聞き手はそ の文字をネットワークで処理し、意味パターンを教 師としてバックプロパゲーションによる学習を行う。

話し手は、出力層の状態が完全に意味パターンと 一致するまで、聞き手に文字を送り続ける。また、 文字数が 20 文字に達した場合、その発言は失敗と なり、発言は中止される。話し手が完全に意味を表 現でき、聞き手が時系列に従って送られてくる文字 列を理解(出力層と意味パターンが一致)した場合、 会話は成功である。

2.c 実行

シミュレーション実行時には、まず聞き手となる エージェントを全体からランダムに選ぶ。次に、伝 達すべき意味のパターンを生成し、話し手となるエ ージェントを選択する。話し手は意味パターンに応 じた文字列を送り、聞き手はそれを解釈し、学習す る。話し手と意味パターンを変えながら、聞き手は 10 回文字列の解釈をする。以上を 1 試行とする。

3. 実験

今回の実験では、エージェント数 35、バックプロパゲーションでの学習率 0.01 とした。図 2 に会話の成功率の推移を示す。

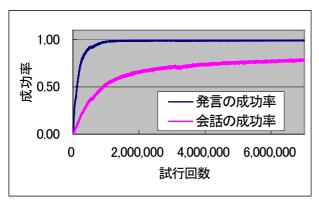


図2 結果の推移

シミュレーションの初期段階では、同じ文字が連続している場合が多く、また異なる意味のパターンに対して同じ言葉が使われる様もしばしば見られる。それがエージェント間の会話という相互作用によって、最終的には意味パターンごとに利用される語彙が分かれ、かつ語順に規則性が見られるようになる。6,000,000 試行後に生成された語彙群の代表的な部分を表 2 に示す。

述語\主語	0	2	3	4	6	7	8
0+1	db	de	bd	ed	dc	daa	dfaa
0+6	fba	fea	befb	efbd	fcbfb	faab	ffab
1+3	dbec	deec	bde	ede	dce	abde	afec
1+6	fbd	fed	bff	efd	ffbd	fad	ffad
2+7	aeb	aee	bae	eae	aec	aba	afcb
3+7	fbeba	febe	be	ee	fcb	abbe	afbe
4+5	dbaa	deaa	baa	eaa	dcaa	aaa	afaa
5+7	cbba	ceba	bba	eebb	cfbba	abba	afbb
6+9	cbf	cef	bf	effc	cfbf	caf	cfaf
8+9	cb	се	bbf	ес	cfb	ca	cfacd

4. 結果の検討

表 2 を見るに、主語パターン 3 に属する語彙には、 全て接頭の b が使われており、同様に主語 4 には e が使われている。そして他の主語では、接頭部に b、e は一切使われていない。また、主語 2 には接頭部に de、ce、fe が使われ、これらも他の主語には出現しない。このように主語に対してユニークな接頭辞が使われる例が、全体の約 64%を占めている。

また一方で、主語と接頭辞が対応していない場合 もある。例えば主語 2 の ae は主語 0、6 などにも出 現している。そのような言葉の意味パターンを解析 すると、接頭辞によって述語部分を固定し、以降の 文字で主語に対応している。これは属性パターンの 組み合わせで出来る述語の、出現頻度の偏りによる と考えられる。

今回のモデルでは、ネットワークに時系列に従った入力をすることで、例えば入力 aa と aaa でパターン表現を変化させることが出来る。また、聞き手が一文字ごとに学習を行うことで、常に語彙を短くしようとする圧が働いている。結果としてエージェントは、接頭部でパターンを大まかに分類し、以降の文字で細部の違いを埋めるようにしている。

初期段階では意味に対応して発せられる言葉はバラバラだが、エージェント群の相互作用(会話)によって取捨選択され、妥当な形に分類されていく。そして、最終的には語彙間にある程度の規則性が成立する。この規則性を一種の文法と見るならば、インタラクションによって文法、言語システムが創発したと言えよう。

参考文献

[1] 有田隆也, "言語の起源/進化に対する創発システム論的アプローチ", 第 24 回知能システムシンポジウム, 1997.

[2] T. Arita and C.E. Taylor, "A simple Model for the Evolution of Communication" Fifth annual Conference on Evolutionary Programming, 1996.[3] J. Batali, "Computational Simulations of the

Emergence of Grammar", Approaches to the Evolution of Language (J.R.Hurford, et al. eds), Cambridge University Press, pp. 405-426, 1998.

[4] J.L. Elman, "Finding Structure in Time", Cognitive Science, 14, pp.179-211, 1990.