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Abstract

Many complex systems can be represented as complex networks. Among them there has been much interest on

community structure recently, and many studies focus attention on it, in particular community detection. While

community detection can provide us much information, the community structure implies another feature, hierarchy of the

system. Coarse-graining of complex networks can lead us to the definition of community graph. The empirical degree

distribution of community graph has a unique nature, where it consists of two distinct parts, exponential and power law

distribution. In this paper, we propose a modified model of community graph [Pollner et al. Europhys. Lett. 73 (2006) 478.]

that mimics the empirical features of it. The growth mechanism of the model is a combination of preferential and non-

preferential attachment in a higher level. We show that the model can reproduce the unique degree distribution by

theoretical and numerical analysis. While such features might stem from some other reasons, we would expect to provide a

unique aspect of community graph.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Many complex phenomena have both dynamical aspects and structural ones. Representing complex systems
as networks leads to a quite fruitful approach for investigating their structural or dynamical properties
individually or both of them simultaneously. Such complex networks have been studied extensively in the last
decade, in particular, WWW, co-authorship networks, metabolic networks, protein interaction networks,
social networks, and so on. Most class of networks exhibit striking topological features in common, e.g., the
small world effect or scale-free degree distribution [1–4], which is characterized by a dynamical growth
mechanism known as preferential attachment [2–4]. In those properties, the main focus is centered on the
macroscopic average or the local topological aspects such as vertex degree, clustering coefficient, average path
length and those distributions. Another issue which attracts much attention in recent years is about modular
e front matter r 2006 Elsevier B.V. All rights reserved.
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structure or sub-units in networks known as community structure [5–7], which means the contrasting density of
edges in networks or the distinguishing parts with many edges in comparison with sparse areas. Such contrast
in edge density is practically used for detection of community structure buried in complex networks and the
definitions of some modularity measures [7–17]. Additionally the existence of such sub-units can be indicative
of hierarchical structure, fractality, and consequently other topological properties at coarse-grained levels
[5,18,19].

The community structure can be widely detected among many types of networks [7–13,15,16] and provide
significant information about not only structural properties but also functional ones. For instance, community
structure detected in biological networks like metabolic pathway or protein interaction networks is thought to
be relevant with functional units [9–11]. As another example, the community in social networks like e-mail
networks of organizations or collaboration networks of musicians could correspond to social groups and
represent its social role [12,13]. Those communities thereby represent collective units, which we can regard as
meta-nodes. As a next step, the inter-community structure or the positioning of a community in the whole
system becomes the focus for us. In general, the functionality or the role of the parts is not independent of its
contexts, in other words, other communities in the network. Each part in networks plays its roll in
collaboration for relevant communities. In practice, communities detected by the clique percolation method in
which a community is defined as the k-clique percolation cluster in networks can overlap, that is to say,
multiple communities can share some nodes at the same time [17]. Furthermore it is suggested that complex
networks cannot always be partitioned into distinct communities without overlapping in a deterministic
manner [14]. The shared nodes connecting their affiliated communities can characterize the relationships
between communities. Thus, community graph or overlapping community structure can be defined as the
network with the set of nodes corresponding to communities and the set of links which represents overlaps
between pairs of communities [17,20].

As for such community graphs, some significant topological features are reported [17]. The first one is the
scale-free distribution of community size [15,16,21]. The second is about the degree distribution of community
graph. The degree distribution can be divided into two distinct regions: an exponential decay in low degree
region and a power law in the high-degree region. Moreover, the exponent of the power-law region is the same
as the one in the community size distribution. The scale-free nature of a community graph suggests the
presence of the growth mechanism based on the preferential attachment rule [2,3,22]. The empirical data on the
growing co-authorship network on the Los Alamos e-print archive indeed supports the existence of
preferential growth behind the evolving mechanism [20]. However, why does the degree distribution of
community graph have two distinct parts, especially exponential decay in low degree area?

In this paper we focus on the features of community graph. We extend the growth model of overlapping
community structure [20], where we adopt a growth mechanism with a combination of preferential and non-
preferential attachment in a higher level, and demonstrate the model can reproduce the observed features by
theoretical analysis and numerical simulation.

2. Model description

In this section, we construct a growth model of a community graph as an extension of the model proposed
by Pollner et al. [20]. In their model, the connections between the elementary nodes are not considered.
Instead, the graph structure representing connections between communities are their focus. For this reason,
the property which characterizes the elementary units does not include the information about the connections
between them, but instead consists of their affiliation to communities. The growth process is realized by
joining new nodes to each community selected with a probability which is proportional to the community size.
In such a preferential growing process, the distribution of the size develops into a power law asymptotically
[22,23]. On the occasion of incorporation, the number of communities where each new node participates is
determined by a Poissonian distribution, which creates a new overlap between those selected communities. If
the number of communities to participate in equals zero, the new node will remain outside the communities
and result in constituting a new community at the time when the ratio of such independent nodes increase to a
predefined value. It has been shown numerically that the community size distribution and the community
degree distribution follow a scale-free distribution with the same exponent.
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Although the fat tailed distribution can be reproduced by the model, the other aspect of the community
graph, i.e., the feature in the low degree region before the cross-over to the power-law decay is not focused on
by them. We propose a modified version of the model that mimics the empirical distribution which has two
distinct parts. The main idea regarding modification is as follows: when a new node is incorporated into a
selected community, the new node does not necessarily come from the outside of the network, in other words,
it is not necessarily a novice. Considering the team assembly process [24], for instance, it is plausible that a new
team is composed of a mixture of persons with various degrees of experience. Thus, as for the community
growth in our model, veteran nodes can be recruited from other communities selected randomly. The rules of
the modified version are as follows:
(1)
 At each time step a new community with m initial nodes is made with a creation probability a.

(2)
 Some existing communities are selected in proportion to their own community size, where the number of

selected communities b is drawn from a Poissonian distribution with an average value bm.

(3)
 With a non-novice probability d each selected community gets a new member from an existing community

selected randomly in a non-preferential manner, otherwise with a probability 1� d from the outside of the
system.
In the former case in (3), the preferentially-selected community and the randomly-selected community come
to share the member, and this overlap corresponds to the link between the two communities. As the initial
condition, we assume some communities with m nodes at time step t ¼ 0. The rules described above are limited
to a minimal set for simplicity, while we could take some more mechanisms into the rules such as recruitment
of a new member from a preferentially-selected community.
3. Theoretical analysis

3.1. The size of community

Using the continuum theory approach [2,25,26], the size ni of community i grows according to the following
equation:

qni

qt
¼ b

niP
knk

, (1)

where b � bm is the number of communities which are selected to grow at each time step. This equation
corresponds to the preferential growth process of each community. By solving Eq. (1) with the initial condition
that ni ¼ m at the time t ¼ ti, we obtain

ni ¼ m
t

ti

� �b=ðbþamÞ

, (2)

where ti is the time step when the community i is created. Thus the probability distribution function of the
community size can be described as follows:

PðnÞ�n�g, (3)

where

g ¼
2bþ am

b
. (4)

This shows that the rules we adopted in this paper can generate power-law behavior on community size as
each community grows in proportion to its size regardless of whether the new node is a novice or a veteran.
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3.2. The degree distribution of community graph

As for community graph, the links correspond to the overlappings between pairs of communities. These
overlappings are formed only when recruiting new nodes from other existing communities in this model. The
recruitment process begins with random selection of a community, in which the selector is the community
selected in a preferential manner in terms of community size at each time step. As the recruitment of a veteran
node occurs with probability d, the evolution equation for community degree ki for community i can be
written as

qki

qt
¼ bd

1

cðtÞ
þ bd

niP
knk

, (5)

where cðtÞ is the number of the existing communities at time step t and given by cðtÞ � at. The first term on the
right-hand side reflects random selection by the other community, which makes the community i grow, while
the second term represents the case the community i selects a new member from other communities. Since the
size ni is given by Eq. (2), we can integrate this equation. By using the initial condition ki ¼ 0 when t ¼ ti, we
obtain

ki ¼
bd
a
ln

t

ti

� �
þ dm

t

ti

� �b=ðbþamÞ

� dm. (6)

We can divide the degree ki into two parts: ki ¼ kexp þ ksf , where they correspond to the first term and the
remaining terms on the right side of this equation, respectively:

kexp ¼
bd
a
ln

t

ti

� �
, (7)

ksf ¼ dm
t

ti

� �b=ðbþamÞ

� dm. (8)

Provided that these two parts, kexp and ksf , are independent, the distribution of the community degree,
which is the main result in this section, thereby has the form:

PðkÞ ¼ Pðkexp þ ksf Þ�PðkexpÞ þ Pðksf Þ, (9)

where

PðkexpÞ� exp
�akexp

bd

� �
, (10)

Pðksf Þ�k
�g
sf . (11)

As a matter of fact, there is a positive correlation between the two types of community degree, i.e., the older
the community is, the larger both types of community degrees. The empirical unique distribution consisting of
two distinct parts however can be derived in the presence of such correlation, considering the dominance of an
exponential distribution in the low-degree region and a power law in the high-degree region. Thus the
community degree distribution in this model also has the form of an exponential decay followed by a fat-tailed
distribution with the same exponent as the one in the community size distribution.

4. Numerical simulation

Analytic results described in the previous section are compared with numerical simulations. We present the
numerical data in Fig. 1. In accordance with the analytic results, the community size distribution follows the
power law. Also, the exponent of the distribution is very close to g predicted by Eq. (3).

Fig. 2 shows the numerical results on the community degree distribution for some cases, d ¼ 0:0520:125.
We see that the numerical data is approximately consistent with the prediction from Eqs. (10) and (11), that is
an exponential decay followed by a power-law tail. In particular, they show good agreement when d is low,
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Fig. 1. Double logarithmic plot of the cumulative probability distribution of the community size PðnÞ. The result is consistent with the

predicted power-law distribution PðnÞ�n�g. In the numerical simulation, we used t ¼ 200 000;m ¼ 2; a ¼ 0:1;bm ¼ 5:0; and d ¼ 0:05. The
dashed line corresponds to the theoretical prediction, g ¼ 1:04.
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Fig. 2. Double logarithmic plot of the cumulative probability distributions of the community degree PðkÞ. Each result is approximately

consistent with the predicted distribution which starts with an exponential curve and then crosses over to the power law. The dashed curves

correspond to the theoretically predicted exponential, expð�ða=bdÞkÞ. The dashed line corresponds to the predicted power-law with the

exponent g ¼ 1:04. We used t ¼ 200 000;m ¼ 2; a ¼ 0:1;bm ¼ 5:0; and d ¼ 0:05; 0:075; 0:1; 0:125; 0:15.
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while the higher d is, the more vague the distinctness between these two regimes. This tendency stems from the
increase of connectivity as it consequently moves the crossover between the exponential and the power-law
regions back to the lower-degree.
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5. Summary and discussion

In this paper, we have studied the growing process of community structure using a model which is a
modified version of the model of the overlapping community structure [20]. Since the focus here is on the
structure of community graph, the connections between elementary nodes are not considered so that the
model can be sufficiently simple to represent the features of community graph. The model has two growth
mechanisms besides the creation of a new community: a preferential growth of community and a non-
preferential growth making overlaps in coarse-grained (community) level. We have conducted both theoretical
analysis and numerical simulations, which showed that this model can mimic the empirical distribution unique
to the overlapping community structure.

It should be noted that such a combination of random and preferential growth rules for community graph
could reproduce the community degree distribution divided into two distinct parts, while it has been shown in
contrast that the growth mechanisms with the same type of combination for growing networks with
elementary nodes and edges between them show not such a unique degree distribution but either a simple
scale-free distribution or alternatively an exponential one [26]. Therefore, the feature captured by this model
can be considered unique to community graph, though the empirical distribution might stem from some other
reasons [17]. We hope that this model can provide a good example of such dissimilar features emerging in
different levels even with the similar rules in contrast with the similarities among the diverse levels of
hierarchies like fractal phenomena in complex networks [18,19].
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